立法強制 ISP 業者記錄客戶使用狀況以供日後調查之用,此等呼聲近來日形高漲。部分行政部門官員業已表態支持此一作為;另有數位國會議員亦主張,應儘速推動聯邦層級之立法,以協助執法部門對付兒童色情( child pornography )問題;甚至在科羅拉多州,目前已有相關法案進入該州參議會接受審理。 立法強制業者留存資料或記錄的作法,固然對於揭發犯罪繩之以法甚有裨益,但由於可能會讓警方得以取得電郵往來、網頁瀏覽、聊天記錄等向來可能經過幾個月之後就會刪除的資料,以致隱私保障人士以及 ISP 業者普遍對此甚感憂慮。歸納而言,其理由主為以下三點:第一,何人始有權限近用相關資料,探查他人上網行為之紀錄,仍待釐清;第二,存留該等資料所需空間勢必可觀,費用究竟由誰支應,亦屬未定;最後,現行法制是否對於警方辦案確實造成障礙,同樣有待探討。 美國司法部( the U.S. Department of Justice )去年即已逐步開始推動相關立法,而歐洲議會( the European Parliament )去年 12 月審議相關條文增修,要求 ISP 業者以及電信業者就其經手傳輸之所有電子訊息以及通話,均須保存相關紀錄 6 個月至 2 年之譜,更是引發諸多關注及討論。美國眾議院( the U.S. House of Representatives )能源商務委員會( the Committee on Energy and Commerce )監控調查組( the Subcommittee on Oversight and Investigations )預計本月 27 日將召開另一次聽證會,持續就此議題詳加探討。
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
微軟向美國專利商標局(USPTO)提出可用以追蹤物體的擴增實境(AR)專利申請依據12月USPTO公開資訊,微軟(Microsoft)於2016年9月2號提出擴增實境(Augmented Reality,以下簡稱AR)系統之美國發明專利申請(申請號:20160373570)。目前AR系統不僅可投射虛擬訊息,還可偵測物理空間之物體位置,不過因為現實生活中,不管是有生命或無生命物體,都不太可能處於完全靜態不動的狀況;而微軟此技術之開發,除了不限於固定空間外,對移動中的物體更具有自動追蹤效果。 微軟專利指出該系統能辨識無生命物體,並可將該物體被選擇為追蹤對象的技術,這個AR系統可持續監測物體的狀態,不僅在同一空間中不同時間點,甚至是物體離開監控空間又被帶回的情況都可追蹤。從微軟專利可以看到這項技術運用在日常生活的價值,如:我們常常花很多時間在想汽車鑰匙和錢包放在哪裡,但透過這個系統的追蹤,可以節省我們找尋的時間;有時我們會忘記家裡的牛奶還剩多少,而花時間去逛超商,倘若我們運用此追蹤技術,能夠隨時知道牛奶剩餘的狀態,就可以避免這種情況的發生。 上開技術不僅包含AR技術,還有虛擬實境(Virtual Reality,簡稱VR)技術,這些技術能透過虛擬與真實世界合併,將真實世界、人類、空間和物體結合,並可進一步的智慧化追蹤,若這項專利被核准且可真實運用到現實生活,必能減少我們的生活中不必要的麻煩。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」