英國通過「隱私及電子通訊規範」

  英國於今年5月26日通過「隱私及電子通訊規範」(The Privacy and Electronic Communications Regulations),實現隱私監督之責,以管控cookies或是侵害個人資料之行為。

 

  新法納入歐盟於2009年e隱私指令中所決定之改變,旨在讓網路使用者自行決定資訊服務業或其他事業能儲存多少使用者之紀錄。但業者對此項新要求表示困惑,因此英國之隱私權主管監督機關資訊專員公署(Information Commissioner's Office,ICO)最近出版一份指引,指導網站如何遵守新法使用cookies功能之規定及履行告知義務之要求。然而指引中並未強制規定告知內容與方式,因此業者仍可自行決定如何最有效地履行告知義務。

 

  ICO本週表示新法尚有一年之緩衝期間,讓業者調整使用cookies功能之方式。政府表示目前仍在與瀏覽企業者討論,如何透過瀏覽器頁面之設置取得當事人之同意,而此部分尚未規定在新法中。

 

  「政府的指引太晚公布了,並且缺乏明確性,又無法確定新法是否能允許以瀏覽器技術作為解決之方法,這樣會讓業界無所適從」,任職於Pinsent Masons法律事務所的科技法律專家Clarie McCracken說,「此種非決定性之指引會使業者無法找到標準作法以避免觸犯新法。」。

 

  ICO認為企業在新法正式施行前,最好趕快表明其如何使用cookies功能並制定相關規定以遵守新法。

 

  新法同時要求特定企業當其所蒐集之個人資料遭受駭客攻擊或外洩時,其必須要告知消費者。根據新法,個人資料遭受侵害之定義為:某種安全狀態遭受攻擊,導致與公共電子通訊服務有關之個人資料被故意或不法毀損、滅失、竄改、越權揭露或存取、傳遞、儲存或其他相關利用。當上述情事發生時,公司必須通報ICO,說明大致情況及可能產生之結果,並提出公司將採取之因應措施,同時告知受害之消費者。

相關連結
※ 英國通過「隱私及電子通訊規範」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5478&no=67&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國證券交易委員會成員發佈「數位資產之投資契約」指導文件

  鑒於「監管不確定性」係加密貨幣市場發展之一大阻礙,2018年間,美國證券交易委員會(United States Securities and Exchange Commission, SEC)成員威廉.希曼(William Hinman)表示,SEC打算發布指導方針,協助市場參與者確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,須受到相關證券法規監管。據此,2019年4月3日,SEC公布指導文件:「數位資產之投資契約分析框架」(Framework for “Investment Contract” Analysis of Digital Assets)。惟須注意的是,該文件為內部成員之意見,不具正式法律效力,不得拘束SEC企業財務局或委員會本身,而僅屬一種指導。   美國法上對於「投資契約」的認定標準,為聯邦最高法院建立的Howey Test,即基於合理的獲利預期、且該獲利來自他人的創業或經營努力、而投資金錢於一共同事業者,成立投資契約,進而構成證券。因此,為確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,該文件特別針對「Howey Test」中的「基於合理的獲利預期」、「該獲利來自他人的創業或經營努力」,提出具體判斷標準,並輔以「其他相關考量因素」,供市場參與者作一參考: (一)基於合理的獲利預期:例如「數位資產持有人可否分享企業收入或利潤,或從數位資產的增值獲得利潤」、「持有人現在或未來得否在次級市場交易」等具體標準; (二)該獲利來自他人的創業或經營努力:例如「營運上是否去中心化」、「數位資產持有人,是否期待發行人執行或管理必要工作」等具體標準; (三)其他相關考量因素:包含「數位資產之設計和執行,旨在滿足使用者需求,而非投機買賣」、「數位資產的價值,通常會保持不變或隨時間減損,理性持有人不會『以投資為目的』而長期持有」、「數位資產可作為真實貨幣之替代物」等等,文件中指出,只要這些其他相關考量因素越明顯,越不符合上開「基於合理的獲利預期且該獲利來自他人的創業或經營努力」。   文件中亦強調,SEC將參酌個案事實,綜合上開各項標準,為客觀之認定。

英國「創新持續貸款」

  英國創新局(Innovate UK)於2020年11月8日公布「創新持續貸款」(Innovation Continuity Loans)申請指南,作為COVID-19疫情應對計畫的工作項目之一,英國創新局將提供2.1億英鎊的貸款予在疫情影響下持續進行創新活動之國內中小企業。本貸款目標對象為因疫情導致出現資金缺口的中小企業,每一間公司將可申請25萬至160萬英鎊不等之創新持續貸款。   「創新持續貸款」源自2017年的創新貸款實驗計畫(Innovation loans pilot),藉由七項創新競賽篩選出約100位申請人,提供總額約7500萬英鎊的創新貸款;此次創新持續貸款則不採競賽方式,而是針對受疫情影響的中小企業創新活動,透過審查機制提供貸款予申請人。申請人資格為正在執行受創新局補助之創新活動者、過去36個月曾受創新局補助而目前正在進行其他創新活動者或是過去36個月並未獲得創新局補助之創新活動的執行、完成或延續性工作者,且確實因COVID-19疫情影響出現資金短缺之中小企業,即可向創新局申請創新持續貸款。   創新局將藉由審查申請者提交至今的工作成果與品質、受疫情影響程度與資金需求情形,評估該創新活動的後續發展潛力,向合格的申請人提供年利息僅3.7%的創新持續貸款。合格的申請人能在2022年3月31日或約定日期前,直到產品首次商業銷售為止,分階段領取貸款,以年利率3.7%計息;產品首次商業銷售後可額外有兩年的寬限期,在產品首次商業銷售或寬限期結束後五年內,申請人必須償還貸款,未償還部分則改採年利率7.4%計息。藉由低利貸款的資金挹注,協助從事新創活動之英國中小企業得以紓困以度過疫情難關。

日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險

日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP