英國於今年5月26日通過「隱私及電子通訊規範」(The Privacy and Electronic Communications Regulations),實現隱私監督之責,以管控cookies或是侵害個人資料之行為。
新法納入歐盟於2009年e隱私指令中所決定之改變,旨在讓網路使用者自行決定資訊服務業或其他事業能儲存多少使用者之紀錄。但業者對此項新要求表示困惑,因此英國之隱私權主管監督機關資訊專員公署(Information Commissioner's Office,ICO)最近出版一份指引,指導網站如何遵守新法使用cookies功能之規定及履行告知義務之要求。然而指引中並未強制規定告知內容與方式,因此業者仍可自行決定如何最有效地履行告知義務。
ICO本週表示新法尚有一年之緩衝期間,讓業者調整使用cookies功能之方式。政府表示目前仍在與瀏覽企業者討論,如何透過瀏覽器頁面之設置取得當事人之同意,而此部分尚未規定在新法中。
「政府的指引太晚公布了,並且缺乏明確性,又無法確定新法是否能允許以瀏覽器技術作為解決之方法,這樣會讓業界無所適從」,任職於Pinsent Masons法律事務所的科技法律專家Clarie McCracken說,「此種非決定性之指引會使業者無法找到標準作法以避免觸犯新法。」。
ICO認為企業在新法正式施行前,最好趕快表明其如何使用cookies功能並制定相關規定以遵守新法。
新法同時要求特定企業當其所蒐集之個人資料遭受駭客攻擊或外洩時,其必須要告知消費者。根據新法,個人資料遭受侵害之定義為:某種安全狀態遭受攻擊,導致與公共電子通訊服務有關之個人資料被故意或不法毀損、滅失、竄改、越權揭露或存取、傳遞、儲存或其他相關利用。當上述情事發生時,公司必須通報ICO,說明大致情況及可能產生之結果,並提出公司將採取之因應措施,同時告知受害之消費者。
美國專利商標局(United States Patent and Trademark Office, USPTO)於2017年1月12日宣布其不再依其審查後試行程序(Post-Prosecution Pilot Program, P3 Program)受理新的案件。該程序係用以使發明人在專利申請程序受到駁回以後得提出更多回饋意見,以期減少上訴至專利審判暨上訴委員會(Patent Trial and Appeal Board, PTAB)之數量。 該程序係在2016年7月11日公布施行,在該程序中,申請人在最終駁回做成後兩個月內得請求召開聽證;申請人得對審查員進行20分鐘內之口頭簡報。簡報進行完畢以後,申請人即被排除於會議之外,審查委員之裁決將會以書面之形式通知申請人。 在P3程序創設以前,專利申請被駁回的發明人得採取上訴前先期審查會議試行計畫(Pre-Appeal Brief Conference Pilot Program)或是最終審議後試行程序2.0(After Final Consideration Pilot 2.0, AFCP2.0)的方式提出明顯錯誤的爭執或是申請內容的修改,但這兩種申訴方式並無法讓申請人取得直接向專利審查員進行簡報的機會。 在2016年7月11日公布本項試行程序時,USPTO即宣布本項計畫試行時間直到2017年1月12日,或是USPTO受理1600位合格申請為止,在本計畫按照預定時程結束後,USPTO表示將會依公眾回饋意見以及試行程序的結果來決定未來是否會施行類似於本計畫之措施。
美國食品藥物管理局發布《人類細胞及基因製劑生產變化及可比性試驗》指引草案—建構再生醫療產品品質要求美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)綜整近20年產官學研的建議,今年7月發布《人類細胞及基因製劑生產變化及可比性試驗》(Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products)指引草案,提供細胞及基因製劑(含組織工程產品)製造商執行可比性試驗依循的標準,做為實際運作上的參考。US FDA並強調若臨床開發與製程開發同步,將會使產品品質提升、產品供應增加或製造效率提高,讓國內外申請商申請新藥臨床試驗(Investigational New Drug, IND)及上市許可有明確的遵循方向。 之所以會需要有此指引的提出,乃是因為現今全球評估生物製劑原料藥或成品在製造品質變更前後的比較,需提供可比性試驗報告,做法上都是參考2004年國際醫藥法規協和會(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH)公布「生物製劑可比性試驗」(ICH Q5E Biotechnological/biological products subject to changes in their manufacturing process: comparability of biotechnological/biological products)指引,但主要適用對象為蛋白質藥品及其衍生物,並不完全適用細胞及基因製劑。 可比性試驗的目的是確保化學製造管制(Chemistry, Manufacturing, and Controls, CMC)變更前後的原料藥或成品,品質需具有高度相似性,才可引用之前的CMC或IND的資料;如果使用的細胞種類、病毒載體及組織工程產品等重大改變,已嚴重影響原料藥或成品的品質,不適用目前的可比性試驗,需重新申請IND或上市許可,將造成申請商需要投入更多的成本,影響產品上市時程。 細胞及基因製劑屬於新興療法,其可比性試驗的審查迄今全球並沒有明確的規範,都是參考ICH Q5E建議,而FDA發布本指引草案正向表列細胞及基因製劑,其驗證確校、安定性及批次變更的可比性依據。讓業者可依循本指引草案,加速細胞及基因製劑的開發、IND申請及產品上市,提升生醫產業的發展。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
日本IPA/SEC公佈「IoT高信賴化機能編」指導手冊日本獨立行政法人情報處理推進機構(IPA/SEC)於2016年3月公佈「聯繫世界之開發指引」,並於2017年5月8日推出「IoT高信賴化機能編」指導手冊,具體描述上開指引中有關技術面之部份,並羅列開發IoT機器、系統時所需之安全元件與機能。該手冊分為兩大部份,第一部份為開發安全的IoT機器和關聯系統所應具備之安全元件與機能,除定義何謂「IoT高信賴化機能」外,亦從維修、運用角度出發,整理開發者在設計階段須考慮之系統元件,並依照開始、預防、檢查、回復、結束等五大項目進行分類。第二部份則列出五個在IoT領域進行系統連接之案例,如車輛和住宅IoT系統的連接、住家內IoT機器之連接、產業用機器人與電力管理系統之連接等,並介紹案例中可能產生的風險,以及對應該風險之機能。IPA/SEC希望上開指引能夠作為日後國際間制定IoT國際標準的參考資料。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。