2011年7月29日美國聯邦巡迴上訴法院針對Myriad Genetics公司之單離去氧核糖核酸(isolated DNA)專利無效上訴案作出判決,認定人體基因具有可專利性。
本案緣起於Myriad Genetics公司利用單離DNA BRCA1及BRCA2兩項基因,發展出一套乳癌風險檢測技術,並成功取得7項專利。未料2009年時,美國公民自由聯盟(American Civil Liberties Union,ACLU)及美國公共專利基金會(Public Patent Foundation,PUBPAT)以「授予單離DNA專利權係違反專利法第101條規定」為由,向紐約南區聯邦地方法院提起確認專利無效之訴,並獲致勝訴判決後,全案便上訴至聯邦巡迴法院。
美國專利法第101條(35 U.S.C §101)雖規定:「任何人發明或發現新而有用的方法、設備、製品或物之組合,或新而有用的改良,皆可依本法所定條件取得專利。」但標的若屬自然產物(product of nature)者,則不應授予專利。因此,本案關鍵問題在於:單離DNA是否屬於自然產物?
針對此一問題,巡迴法院以1887年聯邦最高法院於Hartranft v. Wiegmann案中所闡明的「人為介入(human intervention)是否已賦予發明物與自然產物明顯不同的特質」原則為判斷標準,認定單離DNA雖取自於原生DNA(native DNA),但其經化學處理後可釋放出特定分子,已與人體內之原生DNA有顯著不同,故具有可專利性。此外,法院更指出,美國專利局(The US Patent and Trademark Office,USPTO)自80年代迄今已釋出40,000件以上與DNA分子相關之專利,其中有20%為人類基因,此種長年行政慣例即便有誤,亦應由國會加以變更,而非法院。
本案受矚目之處,在於Myriad公司上訴時,美國司法部即透過法庭之友建議書(friend of the court briefs),向巡迴法院表明其否認人類基因具有可專利性的立場,因此本案判決結果等同於對司法部見解之否決。美國生技業者則認為單離基因專利(isolated gene patent)是生技產業的基石,此判決結果符合專利局一貫的專利政策,而此政策正是過去催生美國生技產業的推手;惟外界預料本案極可能再上訴至聯邦最高法院,屆時將對美國生技產業造成何種影響,值得持續觀察。
本文為「經濟部產業技術司科技專案成果」
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
美國商品期貨交易委員會發布《自願碳額度衍生性金融商品上市指引》,闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)於2024年10月15日發布《自願碳額度衍生性金融商品上市指引》(Commission Guidance Regarding the Listing of Voluntary Carbon Credit Derivative Contracts),闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素,旨在推動仍處於發展階段的自願碳額度商品之標準化,以強化其透明度與流動性。本指引認為,決定進行上市交易前應先行考量下列因素: 1.透明度(Transparency):契約應公開碳額度方案(crediting program)與所認證減量專案活動之相關資訊。 2.外加性(Additionality):若無碳額度構成誘因,則其所代表之碳減量或移除將無從發生。 3.永久性與應對反轉風險(Permanence and Accounting for the Risk of Reversal):碳額度方案所核發之碳額度若遭撤銷,應具有充足緩衝儲備(buffer reserve)以替換品質相當之碳額度。 4.穩健量化(Robust Quantification):量化方法應穩健、保守且透明,以確保核發碳額度數量準確反映減排或移除量。 5.治理(Governance):碳額度方案應具備公開治理框架以建構獨立性、透明度及問責制度。 6.追蹤與避免重複計算(Tracking and No Double Counting):碳額度方案應追蹤碳額度之核發、轉讓及註銷,並確保已註銷額度不會再被使用而導致減排或移除量重複計算。 7.第三方確證及查證(Third-Party Validation and Verification):契約應明確記載第三方確證及查證程序,以確保碳額度實物交割符合品質要求,並與自願碳市場最新標準一致。
美國「2009年經濟復甦暨再投資法」大幅度修正HIPAA隱私權條款2009年02月17日美國總統簽署通過「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業列為重點發展項目之ㄧ,擬由政府預算進行醫療資訊科技化計畫,俾使電子病歷的傳輸與交換得兼顧效率及安全。而以規範醫療資訊安全為主的「醫療保險可攜及責任法」之隱私權條款(HIPAA, Privacy Rule),亦因此有重大修正。 其中,最主要的變革在於擴充HIPAA的責任主體,由原有的健康照護業者、健康計畫業者及健康照護資訊交換業者,擴充至凡因業務關係而可能接觸個人健康資訊的個人或業者,包含藥劑給付管理公司、代理人及保險業者等,這些機構或個人原本與醫療院所或病患間係依據契約關係進行責任規範,但被納入HIPAA的責任主體範圍後,則需依此負擔民、刑事責任。 而於加強資訊自主權部份,亦有數個重要變革如下:(一)責任主體之通知義務:依據新規定,資料未經授權被取得、使用或揭露,或有受侵害之虞時,責任主體應即早以適切管道通知資訊主體有關被害之情事,以防備後續可能發生的損害。(二)資訊主體之紀錄調閱權:以往資料保管單位得拒絕個人調閱健康資料運用紀錄之請求,有鑒於病歷電子化後,保存及揭露相關紀錄已不會造成過重負擔;依據新規定,資訊主體有權調閱近三年內個人健康資料被使用次數及目的等紀錄。(三)資訊主體資料揭露之拒絕權:以往責任主體得逕行提供個人醫療資訊作為治療、計費及照護相關目的之使用,無論資訊主體曾表達拒絕之意與否;依據新規定,資訊主體得禁止其向保險人揭露相關資訊,除非保險人已全額支付醫療費用。 以上HIPAA之新增規範,預計於2010年02月17日正式施行。
美國《代幣分類法》(Token Taxonomy Act)草案目前,美國證券管理委員會(U.S. Securities and Exchange Commission, SEC)對於數位貨幣的態度傾向於將代幣視為有價證券。《代幣分類法》(Token Taxonomy Act)草案則是持反對意見的聲浪¬,由美國眾議員Warren Davidson為首,並且獲得跨黨派多位眾議員的支持。《代幣分類法》主要的訴求是希望可以將數位代幣排除於證券,進而排除虛擬貨幣之稅務。重點有三: 修正《證券交易法》,將數位代幣排除於證券 將「數位代幣」(Digital Token)定義為驗證交易或遵循規則防止交易被竄改之「數位單元」(Digital Unit,以電腦可讀取的形式儲存,用於表彰經濟、財產上權利,或存取權限)。同時,在原先「證券」(Security)的定義中,排除「數位代幣」;另將證券「交易」(Exchange)交易排除數位貨幣適用。 擴張銀行之定義 修改「銀行」之定義。原先《1940年投資顧問法》和《1940年投資公司法》所指之「銀行」,包括「取得存款或執行信託權利(Fiduciary Powers)」等與准許經營銀行執行雷同事業者,是否為公司不在所問(Incorporated)。《代幣分類法》將之擴張為「取得存款、提供保管服務(Custodial Services)或執行信託權利」。 修正將虛擬貨幣視為免課稅對象 虛擬貨幣(Virtual Currency)定義為表彰數位價值之交易媒介且不是貨幣。並修正美國《1986國內所得稅法》(Internal Revenue Code of 1986),將虛擬貨幣交易視為免課稅之交易,並將總額小於600美金的虛擬貨幣買賣或交易之所得,排除於總收入(Gross Income)之外。 然而,目前美國證券管理委員會的態度仍未改變,並且於2019年4月3日發表〈數位資產「投資契約」分析之架構〉(Framework for “Investment Contract” Analysis of Digital Assets)。該分析架構說明:凡符合Howey Test之標準的「投資契約」即屬於「證券」,有《證券交易法》的適用。〈數位資產「投資契約」分析之架構〉甫發表,Warren Davidson與另外五位眾議員隨即重新提起2019年版的《代幣分類法》草案,是繼2018年9月、2018年12月第三度提起相關法案。楊安澤(Andrew Yang,美國首位角逐總統的華裔候選人)在2020年民主黨黨內總統初選政見中,亦援引《代幣分類法》草案,希望可以與連署《代幣分類法》草案的美國國會議員和懷俄明州(Wyoming)的立法者,共同擘畫有利於商業與人民的數位資產框架。