2011年7月29日美國聯邦巡迴上訴法院針對Myriad Genetics公司之單離去氧核糖核酸(isolated DNA)專利無效上訴案作出判決,認定人體基因具有可專利性。
本案緣起於Myriad Genetics公司利用單離DNA BRCA1及BRCA2兩項基因,發展出一套乳癌風險檢測技術,並成功取得7項專利。未料2009年時,美國公民自由聯盟(American Civil Liberties Union,ACLU)及美國公共專利基金會(Public Patent Foundation,PUBPAT)以「授予單離DNA專利權係違反專利法第101條規定」為由,向紐約南區聯邦地方法院提起確認專利無效之訴,並獲致勝訴判決後,全案便上訴至聯邦巡迴法院。
美國專利法第101條(35 U.S.C §101)雖規定:「任何人發明或發現新而有用的方法、設備、製品或物之組合,或新而有用的改良,皆可依本法所定條件取得專利。」但標的若屬自然產物(product of nature)者,則不應授予專利。因此,本案關鍵問題在於:單離DNA是否屬於自然產物?
針對此一問題,巡迴法院以1887年聯邦最高法院於Hartranft v. Wiegmann案中所闡明的「人為介入(human intervention)是否已賦予發明物與自然產物明顯不同的特質」原則為判斷標準,認定單離DNA雖取自於原生DNA(native DNA),但其經化學處理後可釋放出特定分子,已與人體內之原生DNA有顯著不同,故具有可專利性。此外,法院更指出,美國專利局(The US Patent and Trademark Office,USPTO)自80年代迄今已釋出40,000件以上與DNA分子相關之專利,其中有20%為人類基因,此種長年行政慣例即便有誤,亦應由國會加以變更,而非法院。
本案受矚目之處,在於Myriad公司上訴時,美國司法部即透過法庭之友建議書(friend of the court briefs),向巡迴法院表明其否認人類基因具有可專利性的立場,因此本案判決結果等同於對司法部見解之否決。美國生技業者則認為單離基因專利(isolated gene patent)是生技產業的基石,此判決結果符合專利局一貫的專利政策,而此政策正是過去催生美國生技產業的推手;惟外界預料本案極可能再上訴至聯邦最高法院,屆時將對美國生技產業造成何種影響,值得持續觀察。
本文為「經濟部產業技術司科技專案成果」
2015年1月6日,美國聯邦地區法官裁定,猴子用照相機自拍,猴子無法取得自拍照的著作權。 英國攝影師Slater在四年前,讓黑冠猴Naruto使用其相機,成功的拍出了罕見的黑冠猴自拍照;而攝影師Slater後來把這些自拍照收錄在出版書中,並同時在網路上公開,並獲得廣大迴響。但之後維基百科(Wikipedia)收進免費圖片資源中,供大眾免費下載使用,Slater認為則認為這些照片的著作權已經被英國官方認可屬於Slater所開設的公司,此認可應適用於全世界。惟美國著作權局在2014年最新政策中,認為著作權登記僅適用「人類作品」,據此Naruto之自拍照並不受著作權保障。 而善待動物組織PETA(People for the Ethical Treatment of Animals)組織也加入了著作權爭奪戰局,其認為由Naruto所拍攝自拍照,其著作權應屬於Naruto,但由於Naruto不懂如何行使權利,故由PETA代為管理著作權,相關收益均會用於保護黑冠猴,並且向舊金山聯邦法院提出告訴。美國聯邦法院則在2016年1月6日判決,目前著作權法仍未將保護範圍擴張至動物作品上,故Naruto並未擁有該自拍照著作權,自無PETA代掌著作權可能;PETA接獲判決後表示會提出上訴。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
澳洲2020年5月全國數位經濟與科技會議會後聲明澳洲產業、科學、能源及資源部(Department of Industry, Science, Energy and Resources)於2020年5月15日舉行全國數位經濟與科技會議,並於會後發表「2020年5月全國數位經濟與科技會議會後聲明」。本次會議由澳洲產業科學能源及資源部部長擔任主席,邀集各州、領地地方政府的創新或科技部門首長,以視訊方式研商COVID-19疫情後如何整合澳洲企業的數位能量,並使澳洲在2030年成為全球數位經濟的領先者。 聲明中首先肯定澳洲數以萬計的企業在面對COVID-19疫情時所展現的危機應對能力與提出各式數位科技解決方案,用以支持員工、服務消費者、提出資源供應的替代方案、溝通利害關係人等,有效地提升了營運與財務上的效率。而政府則藉由提供各式財務、社會保險與稅務上的支援措施,並持續針對個別情況規劃最適的支援方案。 聲明指出根據研究,數位工具將能協助小型企業每週節省約10小時的工時,並提升約27%的營收;若乘上澳洲全國小型企業的總數,等於每週可省下約2200萬小時的工時,並可年增約3850億元的營收。企業在疫情期間所採取的數位科技解決方案是未來推動營運模式數位轉型的契機,因此在疫情後整合澳洲官方與民間的數位能量,將是疫情後經濟復甦與未來經濟成長的關鍵。 聲明指出與會聯邦及地方政府相關首長已達成共識,將組成「數位經濟與科技資深官員小組」(Digital Economy and Technology Senior Officials Group),專責整合聯邦政府與地方政府的數位政策。本小組將提出數位經濟政策與企業所需的支援措施,用以加速數位轉型與COVID-19疫情後的經濟復甦,包含完成人工智慧及自主系統能力地圖(Artificial Intelligence and Autonomous Systems Capability Map),來找出尚待強化的能力與可加強合作的契機。 此外本小組將合作推動數位與資通安全工作、關鍵技術法規鬆綁,以協助減少企業法遵障礙並支持數位經濟成長。COVID-19疫情下揭示澳洲推動數位轉型的重要性,期許本小組能有效整合數位能量並填補數位落差,未來將每年召開三次全國數位經濟與科技會議,追蹤澳洲數位經濟與科技生態系的推動情形,並聽取資深官員小組的定期工作報告。