英國ISP業者主動揭露網路速度資訊

  2011年5月英國電信主管機關Ofcom(Office of communications)對英國境內寬頻網路速率現況進行調查,寬頻網路平均下載速度從去年11月的6.2Mbits/s增為6.8Mbits/s,且有近半(47%)的使用者可享受到超過10Mbit/s的速度。

  但廣告速度與真實速度間的差距擴大,今年5月業者平均廣告速度為15Mbit/s,,較真實速度6.8Mbits/s差距為8.2Mbit/s,而2010年11月平均廣告速度13.8Mbit/s真實速度6.2Mbit/s,差距為7.6Mbit/s。上述的差距主要發生於ADSL網路,英國有近75%的使用者仍用ADSL,此種傳輸方式將受到距離、纜線品質的影響。因此大多數業者所宣稱的20Mbit/s下載速度,僅能達到6.6 Mbit/s。有超過1/3的使用者速度為4 Mbit/s或更低。

  F英國今年7月正式實施之寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds),為業者自願加入。除提供消費者「典型的速度範圍」(Typical Speed Range, TSR)資訊外,若消費者可使用速度小於業者宣稱之速度範圍,且業者無法解決問題時,在3個月內使用者可更換其他業者而無須罰款。目前已有BT、O2、Virgin Media等17家ISP業者加入自律規則中。

相關連結
※ 英國ISP業者主動揭露網路速度資訊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5523&no=67&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
歐盟公布人工智慧法,建立全球首部AI全面監管框架

歐盟公布人工智慧法,建立全球首部AI全面監管框架 資訊工業策進會科技法律研究所 2024年07月12日 歐盟理事會於2024年5月22日正式批准《人工智慧法》(Artificial Intelligence Act,下稱AIA)[1],該法於2024年7月12日公告於歐盟的官方公報上,將自8月1日起生效,成為全球首部全面性監管AI的法律框架。 壹、事件摘要 人工智慧技術的應用廣泛,隨著使用情境增加,潛在的風險也逐一浮現。歐盟於2018年就提出「可信任的人工智慧」(Trustworthy AI)的概念[2],認為透過妥善的制度管理人工智慧的研發與使用,即使人工智慧具有多種風險,也可以使民眾享受人工智慧帶來的福祉。因此,歐盟執委會提出全球第一部全面監管人工智慧的法案,為人工智慧的設計、開發、部署、及使用建立適當的規範,希望法律的確定性能促進該技術的創新,並建立各界對於該技術的信心,擴大其採用,使該技術能造福人群。 自從歐盟執委會於2021年4月提出人工智慧法草案以來,其後續發展備受全球矚目,也吸引歐洲的人權組織、學術團體以及大型科技公司的關注。在多方利益關係者的遊說與介入下,該法案一度陷入僵局,其中生成式人工智慧(Generative AI)亦為爭議焦點。歐洲議會和理事會的AIA草案修正版本中,曾經納入生成式AI的定義與監管條款,然最後拍板定案以AI系統與基礎模型為監管對象,並未針對生成式AI。理事會、執委會和歐洲議會經過多次三方會談,終於在2023年12月8日就內容達成協議[3],草案在2024年3月13日交由歐洲議會大會表決,最終以壓倒性的票數通過該法。[4] 貳、重點說明 AIA全文分為13個章節,總計有113個條文以及13個附件。[5]AIA採分階段實施的方式,該法在生效三年後才可能完全實施。[6]本文擬就該法建立的AI監管框架,包括其適用範圍與規範、管理方式、治理組織、實施和配套措施等規定,擇重點說明如下。 (一)規範對象 AIA的規範對象分為兩類,其一為AI系統;另一為通用人工智慧模型(General Purpose Artificial Intelligence Model, GPAI,下稱通用AI模型)。 1. AI系統 為與國際接軌,歐盟修改AIA有關AI系統的定義,使其與「經濟合作暨發展組織」(Organisation for Economic Cooperation and Development,OECD)的定義一致,令該法更具國際共識基礎。AI系統被定義為「一種機器的系統,它以不同程度的自主性運作,在部署後可能展現適應性,並且對於明確或隱含的目標,從接收到的輸入推斷如何產生預測、內容、建議或可能影響實體或虛擬環境的決策等輸出。」[7] AIA設有豁免規定,涉及國安和軍事領域、科學研究和開發目的、純粹個人非專業活動使用的AI系統、以及大部分的免費及開源軟體並不適用AIA規範。免費及開源軟體只有屬於高風險或生成式AI系統、或涉及生物特徵和情緒識別目的,才須遵守AIA規範。[8] 2. 通用AI模型 執委會的草案原本不包含通用AI模型,在歐洲議會和理事會的建議下,AIA最後亦將通用AI模型納入監管。所謂通用AI模型,係指具有顯著通用性的AI模型,它可以勝任各種不同任務的執行,並且可以與下游的系統或應用程式整合。[9] 值得注意的是,AIA只約束已經在歐盟上市的通用AI模型,在上市前用於研究、開發和原型設計活動的通用AI模型並不包括在內。 (二)以風險為基礎的分級管理方式 AIA採取風險途徑監管AI系統和通用AI模型,視潛在風險和影響程度決定義務內容,對於兩者建立不同的分類規則,並針對AI系統整個生命週期進行規劃、建立AI系統和通用AI模型在各階段應符合的要求,由AI價值鏈的參與者分別承擔相應責任,其中以提供者(provider)和部署者(deployer)為主要的責任承擔者。[10] 1. AI系統的分級管理 根據風險程度對系統進行分類,以具有高風險的AI系統為主要規範對象,該類系統在投入市場或使用前必須通過合格評估,並遵守嚴格的上市後規範;而具有不可接受風險的AI系統則禁止使用。另外,AIA還訂有透明性義務,舉凡與人互動、具生成內容能力之AI系統提供者皆應遵守;如果AI產生內容具有深偽(deep fake)效果,其系統部署者還應遵守額外的規定,揭露該內容係人工生成或操縱的結果[11]。 2. 通用AI模型的分級管理 AIA訂有通用AI模型的共通義務[12],並根據模型的能力判定其是否具有系統性風險(systemic risks)。[13]所有的通用AI模型提供者都須公開模型訓練內容的詳細摘要,並遵守歐盟著作權法的規定[14];而具有系統性風險的通用AI模型提供者,還須負擔額外的義務。[15] (三)治理組織 1. AI辦公室 為順利實施AIA,執委會已成立一「人工智慧辦公室」(AI Office,下稱AI辦公室),負責促進、監督AIA落實,它同時也是通用AI模型的監管機構。[16]AIA框架下,會員國市場監管機構僅負責AI系統的監管工作。 2.人工智慧委員會 除了AI辦公室外,還設有一「人工智慧委員會」(AI Board),由歐盟會員國派代表成立,主要負責協調各國的作法、交換資訊、以及提供各國市場監管機構建議。[17] 3.「獨立專家科學小組」與「諮詢論壇」 歐盟層級還有兩個支持性的組織:「獨立專家科學小組」(Scientific Panel of Independent Experts)和「諮詢論壇」(advisory forum),可提供落實AIA規範所需之專業技術知識與實施建議。 獨立專家科學小組的成員係由執委員會指定,執委會將視任務所需的最新科學或技術專業知識進行挑選,該小組最重要的任務在於支援通用AI模型和系統相關規定的實施和執行,包括向AI辦公室通報存在系統性風險的通用AI模型、開發通用AI模型和系統能力評估的工具和方法等。[18] 諮詢論壇成員亦由執委會指定,執委會應顧及商業和非商業利益間的平衡,從AI領域具有公認專業知識的利害關係人當中,尋找適當的人選。諮詢論壇主要任務是應理事會或執委會的要求,準備意見、建議和書面報告,供其參考。[19] 4.會員國內部各自之市場監管機關 在會員國層級,由各國市場監管機關負責督導AIA規定之實施[20],各國並將成立或指定公告主管機關(notifying authority),負責進行公告合格評估機構(notified bodies)評選與指定事宜,日後將由各公告合格評估機構負責AIA下的第三方合格評估業務。[21] (四)實施與配套措施 1.分階段實施 AIA的規定將在該法生效24個月後開始實施,然考慮到歐盟和會員國的治理結構尚在討論中,且業界在法遵上也需要時間調適,因此AIA的部分條文將分階段實施。 (1) AIA通則以及不可接受風險的AI系統禁令在該法生效6個月後即實施; (2) 通用AI模型、第三方認證機構和會員國公告合格評估機構、以及違反AIA的罰則等相關規範,於該法生效12個月後開始實施; (3) AIA附件III清單之高風險AI系統相關義務,要等該法生效36個月後才開始實施; (4) 而AIA生效前已上市之通用AI模型提供者,應在該法生效36個月內,採取必要行動使其模型合乎AIA規定。[22] 2.罰則規定 AIA訂有罰則,在AIA措施正式實施後,違規者可能面臨鉅額罰款[23]。 3.配套措施 由於AIA以建立監管框架為主,相關規定之實施細則或標準,這仍待執委會逐步制定。因此,在AIA各配套辦法提出之前,AI辦公室將以「實踐守則」(codes of practice)[24]和「行為守則」(codes of conduct)之訂定與推動為主,另外又提出「人工智慧公約」,希望藉由此些配套措施協助受AIA規範的各方,使其在最短時間內能順利履行其應盡義務。 (1) 「實踐守則」 實踐守則(codes of practice)針對的是通用AI模型提供者。AI辦公室將鼓勵所有通用AI模型提供者推動和參與實踐守則的擬定,AI辦公室亦將負責審查和調整守則內容,確保反映最新技術及利害關係各方的觀點。實踐守則應涵蓋通用AI模型和具系統性風險的通用AI模型提供者的義務、系統性風險類型和性質的風險分類法(risk taxonomy)、以及具體的風險評估和緩解措施。[25] (2) 「行為守則」 行為守則(codes of conduct)之目的在於推動AIA的廣泛適用,由AI辦公室和會員國共同推動,鼓勵高風險AI系統以外的AI系統提供者、部署者和使用者等響應,自動遵循AIA關於高風險AI的部分或全部要求。AI系統的提供者或部署者、或任何有興趣的利害關係人,都可參與行為準則。[26] (3) 「人工智慧公約」 AIA中的高風險AI系統以及其他重要規定需待過渡期結束才開始適用[27],因此執委會在AIA的框架外,另提出「人工智慧公約」(AI Pact,下稱AI公約)計畫,鼓勵企業承諾在AIA正式實施前,即開始實踐該法規範。 AI公約計畫有兩個行動重點,其一是要提供對AI公約有興趣的企業有關AIA實施流程的實用資訊,並鼓勵這些企業進行交流。AI辦公室將舉行研討會,使企業更了解AIA以及如何做好法遵的準備,而AI辦公室也可藉此收集企業的經驗反饋,供其政策制定參考。 另一個重點是要推動企業承諾儘早開始實踐AIA,承諾內容包括企業滿足AIA要求的具體行動計畫和行動時間表,並且定期向AI辦公室報告其承諾進展;AI辦公室會收集並發布這些報告,此作法不僅有助提高當責性和可信度,亦可增強外界對該些企業所開發技術的信心。[28] 參、事件評析 執委會希望透過AIA提供明確的法律框架,在推動AI創新發展之際,也能確保民眾的安全權利保障,並希望AIA能夠複製GDPR所創造的「布魯塞爾效應」(Brussels Effect),為國際AI立法建立參考標竿,使歐盟成為AI標準的領導者。然AI技術應用的革新發展速度驚人,從AIA草案提出後的兩年內,AI技術應用出現顛覆性的變革,生成式AI的技術突破以及該技術已顯現的社會影響,使得歐盟內部對於AIA的監管格局與力度有了更多的討論,看法莫衷一是。因此,AIA最後定案時,內容有多處大幅調修與新增。 (一)AI系統定義與OECD一致 首先,執委會的原始草案中,強調AI系統的定義方式應根據其關鍵功能特徵,並輔以系統開發所使用之具體技術和方法清單。[29]然AIA最後捨棄詳細列舉技術和方法清單的作法,改採與OECD一致的定義方式,強調AI的技術特徵與運行模式。採用OECD的定義方式固然係因OECD對AI系統的定義更具彈性,更能因應日新月異的AI新技術發展;這樣的作法亦有助AIA與國際接軌、更為國際社會廣泛接受。 (二)規範通用AI模型並課予生成式AI透明性義務 其次,生成式AI衍生的眾多問題和潛藏風險引發全球熱議,在AIA的三方會談過程中,生成式AI的管制也是談判的焦點議題。原本外界以為歐盟應該會在AIA嚴加控管生成式AI的應用,尤其是「深偽」(deep fake)技術的應用。然而「深偽」技術在AIA的分類方式下,卻僅屬於有限風險的系統,雖負有透明性義務,卻僅需揭露若干資訊即可。「深偽」的問題暴露出生成式AI系統的監管難題,最後AIA拍板定案,僅在透明性義務的章節中提及生成式AI,並且以技術描述的方式取代一般慣用的「生成式AI」(Generative AI)一詞。 歐盟另闢途徑管理生成式AI。AIA的原始草案僅針對AI系統,並無管制AI模型的條文[30],然有鑑於生成式AI模型係以通用AI模型開發而成,因此AIA新增「通用AI模型」專章,從更基礎的層次著手處理生成式AI的問題。在AIA生效後,歐盟境內的通用AI模型將統一由歐盟的AI辦公室負責監管。考慮到生成式AI應用的多樣性,歐盟從通用AI模型切入、而不針對生成式AI進行管理,可能是更務實的作法。 (三)推出多項配套措施強化AI治理與法遵 最後,歐盟在AIA框架外,針對不同的對象,另建多項配套措施,鼓勵非高風險AI系統提供者建立行為守則、推動通用AI模型提供者參與「實踐守則」的制定和落實、並號召AI業者參與「AI公約」提早遵循AIA的規定。這些措施可指導相關參與者採取具體的步驟與作法達到合規目的,俾利AIA之實施獲得最佳成效。 AIA眾多執行細則尚待執委會制定,包括高風險AI清單的更新、通用AI模型的分類方式以及標準制定等,這些細節內容將影響AIA的實際執行。我國應持續關注其後續進展以因應全球AI治理的新格局,並汲取歐盟經驗作為我國AI監管政策與措施的參考。 [1]Regulation Of The European Parliament And Of The Council Laying Down Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Acts, 2024, OJ L( 2024/1689), http://data.europa.eu/eli/reg/2024/1689/oj (last visited July. 12, 2024). [2]High-Level Expert Group on AI of the European Commission, Ethics Guidelines for Trustworthy Artificial Intelligence, April 8, 2019. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (last visited June 25, 2024). 該小組在2018年12月提出草案並徵求公眾意見,並於2019年4月正式提出該倫理指引。 [3]European Parliament, Press Release: Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI, Dec. 9, 2023, https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited June 25, 2024). [4]European Parliament, Press Release: Artificial Intelligence Act: MEPs adopt landmark law, March 13, 2024, https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law (last visited June 25, 2024). [5]European Parliament, Position of the European Parliament adopted at first reading on 13 March 2024 with a view to the adoption of Artificial Intelligence Act, https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html# (last visited June 25, 2024). [6]AIA, art. 113. [7]AIA和OECD對AI系統的定義的差異僅在於用字遣詞及語句編排方面,兩者在意涵上其實是一致的。See AIA, art. 3(1). [8]AIA, art. 2. [9]AIA, art. 3(63). 執委會原先認為,AI模型無法獨立使用,僅需鎖定AI系統監管即可,然而生成式AI衍生的諸多問題,令人擔憂放任通用AI模型發展可能產生無法預期的後果,因此歐盟最後決定在AIA條文中加入通用AI模型規範。 [10]但AIA訂有豁免適用的規定,包括國安和軍事領域、科學研究和開發目的、以及純粹個人非專業活動使用的AI皆不受AIA約束。AI價值鏈的其它參與者還包括進口商、授權代表、經銷商等。See AIA, art. 2. [11]AIA, art. 50. [12]AIA, art. 53. [13]AIA, art. 51. 「系統性風險」是指通用AI模型特有的高影響力所造成的風險。由於其影響範圍廣大,或由於其對公共健康、安全、公眾的實際或合理可預見的負面影響,進而對歐盟市場產生重大影響。See AIA, art. 3(65). [14]AIA, art. 53. 在上市前用於研究、開發和原型設計活動的通用AI模型除外。 [15]AIA, art. 55.例如進行模型評估、進行風險評估和採取風險緩解措施、確保適當程度的網路安全保護措施。 [16]Commission Decision On Establishing The European Artificial Intelligence Office, C(2024) 390 final, 2024, https://ec.europa.eu/newsroom/dae/redirection/document/101625 (last visited June 25, 2024). [17]AIA, art. 65. [18]AIA, art. 68. [19]AIA, art. 67. 該條款規定,歐盟的基本權利局(The Fundamental Rights Agency)機構、歐盟網路安全局(The European Union Agency for Cybersecurity)、歐洲標準化委員會 (CEN)、歐洲電工標準化委員會 (CENELEC) 和歐洲電信標準協會 (ETSI) 應為諮詢論壇的永久成員。 [20]AIA, art. 70. [21]AIA, art. 28 & 29. [22]AIA, art. 113. [23]AIA, art. 99. [24]AIA, art. 56. [25]AIA, recital 116 & art. 56. [26]AIA, art. 95. [27]AIA有關治理組織、罰則、通用AI模型的規定於該法生效12個月後才開始實施,屬於附件二範圍的高風險AI系統的相關規定則遲至該法生效36個月後才實施。AIA, art. 113. [28]European Commission, Shaping Europe’s digital future: AI Pact, (last updated May 6, 2024) https://digital-strategy.ec.europa.eu/en/policies/ai-pact (last visited June 25, 2024). [29]Proposal for a Regulation Of The European Parliament And Of The Council Laying Down Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Acts, COM(2021) 206 final, recital (6). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (last visited June 25, 2024). [30]執委會的原始草案中,僅於第四章關於AI系統透明性的條文中提及具有「深偽」(deep fake)能力的系統應負揭露義務。

中國大陸法院認定AI創作可受著作權法保護

中國大陸法院認定AI創作可受著作權法保護 資訊工業策進會科技法律研究所 2023年12月05日 近期生成式AI的工具運用,無論是生成文字的ChatGPT、生成圖像的Midjourney及生成影片的Pictory,技術一日千里,蓬勃發展;其應用已逐漸進入一般人的生活領域網,而且產生AI產出的侵權爭議,滋生運用AI創作的生成內容是否可主張著作權之疑義。我國經濟部智慧財產局於今(112)年6月以經授智字第11252800520號令 函指出--「AI利用人如係單純下指令,並未投入精神創作,由生成式AI模型獨立自主運算而生成全新內容,該AI生成內容不受著作權法保護。」採取否定見解 。不過其前提係「單純下指令,並未投入精神創作」,適於日前中國大陸北京互聯網法院於11月27日以(2023)京0491號民初11279號民事判決 認為如可認定屬「非機械性智力成果」,運用AI生成的圖片仍可受著作權保護。 壹、事件摘要 本案起因於原告將其使用開放原始碼的Stable Diffusion以輸入提示詞的方式,生成「春風送來了溫柔」之少女人像圖,並發布於網路平台。原告於事後發現,被告將該圖原有的原告署名浮水印(平台所發予的用戶編號)截除,並使用於其在網路上發布的文章中使用該圖做為插圖。原告因此提起姓名表示權與網路傳輸權的侵權訴訟。 被告主張系爭圖片具體來源為網路取得,已無法識別來源與浮水印,並不能確定原告是否享有圖片之權利;而且其所發布的主要內容為原創詩文,並非系爭圖片,亦未做為商業用途,並無侵權故意。 原告於本案中提出生成過程的影片佐證資料,北京互聯網法院認定呈現下列具體生成(取捨、選擇、安排與設計)步驟: 一、選擇前述軟體程式提供的模型,初步決定畫面最終生成的可用素材,決定作品的整體風格、類型。 二、為展現一幅在黃昏的光線條件下具有攝影風格的美女特寫所需,輸入有關類型、主體、環境、構圖、風格的提示詞,包括:「超逼真照片」與「彩色照片」類型;「日本偶像」主體並詳細描繪臉部皮膚、眼睛、辮子等細節;「外景」、「黃金時間」與「動態燈光」之環境提示;「機前瀏覽(眼看鏡頭)」、「酷姿勢」為構圖提示;「底片紋理、膠卷仿真」等風格提示。另並進行輸入反向指令提示,包括:繪畫、卡通、動漫等要求,以避免此類風格出現於生成內容。 三、進行相關參數設定,以及多次試驗的調整,包括採樣方法、清晰度、圖形比例等不同參數設置。 貳、重點說明 北京互聯網法院根據原被告的陳述與提供的證據資料,認定原告的AI生成圖構成作品(受著作權保護),且原告享有該作品之著作權: 一、法院首先提出四個認定是否構成作品的判斷要件:1.是否屬文學、藝術、科學領域;2.是否具有獨創性(原創性);3.是否具有一定的表現形式;4.是否屬於智力成果。同時認為本案須審酌的重點在於獨創性與是否屬於智力成果。 二、關於「是否屬於智力成果」,法院認為從原告構思圖片到最終圖片選定為止,原告進行了一定的智力投入,例如設計人物的呈現方式、選擇提示詞、安排提示詞的順序、設置相關的參數、選擇符合預期的生成內容,已具備本要件。 三、至於「是否具有獨創性」,法院認為非有智力投入的都具有獨創性,如「按照一定的順序、公式或結構完成的作品,不同的人會得到相同的結果」,則屬「機械性的智力成果」,並不具有獨創性。但運用AI生成過程若能「提出的需求與他人越具有差異性,對畫面元素、布局構圖描述越明確具體」就越能呈現人作者的個性化表達。因此,法院認定原告雖然AI創作沒有使用畫筆,也與過去使用繪圖軟體不同,但原告對於人物及其呈現方式透過提供進行設計,並透過反覆的修改參數、調整修正,這過程呈現原告的審美觀,而亦可見不同人使用該AI工具可以自行生成不同的內容,故該作品「係由原告獨立完成、體現了原告的個性化表達」。 四、針對原告是否享有該圖作品的著作權,法院採肯定看法認為: 1.雖原告使用AI工具的行為類如委託他人設計,於委託時該是受託人為創作人,但委託與AI工具區別在於委託人具有自主意志,AI工具本身並沒有,不是自然人或法人等民事主體,依法(中國大陸著作權法)該AI工具本身無法成為作者而享有著作權。 2.事實上仍是人以工具進行創作,而工具的設計者亦已於GitHub論壇的授權條款中揭示該工具的授權人並不對使用者所生成的內容主張權利。 3. AI工具的設計者本身並沒有創作該圖的意願,亦無預先設定後續生成內容,未參與創作的生成過程,其訓練雖然是投入相當大的心力,但投入的是在工具的創建而非特定內容的生成。 參、事件評析 本案最終由原告獲得勝訴,法院認定被告侵害其姓名權與公開傳輸權,雖然法院認為使用AI工具的行為類如委託他人設計,於委託時該是受託人為創作人,但也認為AI工具本身並沒有自主意志,不是可享有著作權利的主體,依法(中國大陸著作權法)該AI工具的使用本質仍是人以工具進行創作,而工具的設計者並沒有生成內容的意思與投入,故應由多次修改呈現其個人表達念的使用者取得著作權。本文認為可以從此判決中獲得下述啟示: 一、對初次生成結果進行修改指令是取得原始性的重點:現今AI工具的使用,如要求程度不高,其實只須簡單的指令,例如生成一個xx的圖片,即可產生一張可用的圖片,但此時AI生成的內容僅是「按照一定的順序、公式或結構完成的作品,不同的人會得到相同的結果」,屬「機械性的智力成果」,將不具有獨創性。 二、反覆修改、調整參數呈差異化,即便是AI生成亦獲保護:運用AI生成過程應力求與他人的使用具有差異性,對畫面元素、布局構圖描述越明確具體,越能呈現人個性化表達,始能取得著作權保護。而反覆的修改參數,例如視線角度、光影呈現方式、表情姿勢要求等圖片的細節呈現,強化呈現個人化的思想、表達、創作投入,即可獲得著作權保護。 三、AI生成世代的著作保護更須重視創作歷程的存證:本案原告取得勝訴的重要關鍵,在其於本案中提出生成過程的影片佐證資料,證明其使用過程的需求(在黃昏的光線條件下具有攝影風格的美女特寫)、取捨(輸入反向指令提示,包括:繪畫、卡通、動漫等)、選擇(「日本偶像」主體並詳細描繪臉部皮膚、眼睛、辮子等細節)、安排與設計(「機前瀏覽(眼看鏡頭)」、「酷姿勢」等構圖)步驟呈現其多次試驗的調整的事實證明,若無此佐證影片,單依生成結果難以證明其創作投入,訴訟結果可能會變成敗訴。 四、AI生成工具的使用須注意生成結果的權利歸屬約定:即便本案針對原告使用AI生成工具的生成結果可受著作權保護,但原告是否享有該圖作品的著作權,法院再次確認工具的設計者的授權條款並沒有對使用者所生成的內容主張權利,若該條款約定使用者不依法可享有的內容權利,使用者的權益將受影響,是必須特別要注意的事情。 如同北京互聯網法院在判決中提及的,在照相機出現之前,人們需要高度的繪畫技術才能再現物體形象,但即便出現智慧型手機亦不影響我們運用它產生有獨創性的作品而構成攝影著作。可預見的未來AI技術會越發達,人的投入會越少,但這並不影響著作權制度鼓勵作品創作的立法意旨,只要有創作性的投入,即便只是反復的指令下達,也仍是受著作權法保護的獨特的個人作品。 [1]詳見臺灣智慧財產局頒布函釋說明生成式AI之著作權爭議,理慈國際科技法律事務所,https://www.leetsai.com/%E8%91%97%E4%BD%9C%E6%AC%8A/interpretation-released-by-taiwans-ipo-to-clarify-copyright-disputes-regarding-generative-ai?lang=zh-hant,最後瀏覽日期2023/12/04。該文提及的智慧財產局令函,本文未能於於該局之著作權函釋系統中檢索到。 [2]該局111-10-31以電子郵件1111031號令函提及有關人工智慧(AI)的創作,如是「以人工智慧為工具的創作」,也就是人類有實際的創意投入,只是把人工智慧(例如:繪圖軟體)當作輔助工具來使用,在這種情形依輔助工具投入創作者的創意而完成的創作成果仍可以受著作權保護,著作權則由該投入創意的自然人享有,除非有著作權法第11條及第12條之情形。 [3]判決全文詳見https://mp.weixin.qq.com/s/Wu3-GuFvMJvJKJobqqq7vQ,最後瀏覽日期2023/12/04。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

因應國際法規變動趨勢的營業秘密管理建議

因應國際法規變動趨勢的營業秘密管理建議 資訊工業策進會科技法律研究所 2024年06月24日 因應技術進步導致資訊的存取與分享更加容易,營業秘密侵權爭議也隨之增長,綜觀國際政策推動或許多跨國智財專家均逐漸重視營業秘密爭議相關議題,並論及營業秘密相關法規趨勢、訴訟經驗、建議企業可執行的營業秘密管理做法等,以下將綜整相關趨勢與專家觀點並提出我國企業建議。 壹、法規變動趨勢 從國際趨勢以觀,各國針對「競業禁止」規定,有逐漸對其嚴格審查與進行法規監管的趨勢,而這也使得透過限制性條款避免機密資訊外洩的難度提高,企業多轉而透過營業秘密管理來加強防護。 一、競業禁止 本文列舉了近期美國與英國對於競業禁止法規監管的趨勢。 (一)美國將從聯邦層級禁止「競業禁止」條款 美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)於今年,2024年4月23日推出一項最終規定「Non-Compete Clause Rule[1]」,該規則將針對除了高級管理人員以外之員工,使僱主與員工之間已簽訂競業禁止協議無效,並禁止未來僱主與員工簽訂競業禁止合約。 (二)英國擬立法限制「競業禁止」之最高法定期限 英國目前的競業禁止相關限制係基於英美法,以法院的個案判決及既判例來執行。英國政府於2020年12月4日至2021年2月26日期間向公眾進行諮詢,並就諮詢意見之政府回覆於2023年發布報告[2],英國政府在該報告中提出,就目前國際實務上競業禁止條款之執行期間除了美國部分州已直接被禁止外,多半未進行太多限制,如德國最高為24個月、義大利最長可達三至五年,而英國政府提出其擬將在議會時間允許的情況下提出立法領先引入「最多三個月[3]」之上限,對於競業禁止條款進行限制。 二、合理保密措施 承上所述,基於「競業禁止」條款的效力可能因為政策、法規變動或在不同國家的規定不同而導致已簽署之競業禁止條款失去效力、尚未簽署之契約禁止再簽署競業禁止條款或只允許在受有限制之情況下簽署等,企業透過此類限制性條款來避免機密資訊外洩的難度提高,使的企業多轉而透過其他日常營業秘密管理措施來加強防護,及證明企業有落實營業秘密的「合理保密措施」之法律要件。 以美國加州為例,該州多年前就禁止「競業禁止」約定,故當地企業早已轉往透過建置營業秘密政策和保護措施來加強防護。 貳、具體營業秘密管理措施之建議 一、合理保密措施之目的 合理保密措施除了作為補足無法使用限制性條款(競業禁止條款)之替代管制措施具有「預防營業秘密洩漏之效果」以外;更具有在營業秘密侵權發生後,訴訟上舉證之用。許多智財實務專家表示,無論是在哪一國法規的管轄下,權利人共通性的困難多在於訴訟的舉證上,因此專家建議企業應留存營業秘密管制措施之執行紀錄以作為將來涉訟時舉證之用。 二、營業秘密管理之具體作法 參照實務上專家的建議,本文彙整將實務上被推薦之具體營業秘密管理做法[4]羅列如下: (一)確立並可以識別營業秘密範圍 對於企業而言,首先應識別並記錄出營業秘密(機密)範圍,才能明確管制措施的範圍,並透過機密的標示(例如浮水印)來使員工能夠認知到接觸的資訊為公司重要的營業秘密。 (二)監控 針對下載、複印、數據傳輸行為或者其他可能包含機密資訊之公司設備等行為公司應進行監控。 (三)使用行為管制 公司應限縮傳播範圍(包含禁止員工通過電子郵件將資訊發送到個人電子郵件或將機密文件攜出公司等);並於不使用時妥善存放保管並上鎖或設置密碼管控。 (四)人員管制 員工作為營業秘密管控機制重要的一環,專家建議應對員工進行教育訓練(告知營業秘密重要性或提供有關如何識別和保護機密資訊的培訓);與相關人員(員工、承包商、合作單位)簽署保密契約(confidentiality agreements)明確定義機密資訊之範圍以及禁止未經授權的使用與揭露;設立離職員工管控機制(包含離職面談、保存相關設備、甚至如果員工可能進入競爭對手工作,企業可評估是否進一步請合格第三方進行鑑識或取證員工身上是否攜帶機密資訊等,以作為未來若涉訟之舉證)等。 參、評析 綜上所述,企業或許已經理解建立合理保密措施並留存作為訴訟時舉證之證據的重要性,並了解些許零散的管理做法,但可能產生管理措施如何才算是完善的疑問,為了提供企業更全面的管理建議,資策會科法所創意智財中心以其在智財領域之研究與實務經驗的積累發布「營業秘密保護管理規範」[5](下稱管理規範)將管理措施透過十個單元建立PDCA管理循環。 經查,上述國際法規變動下實務專家討論之營業秘密管理措施均包含在管理規範內,如「(一)確立並可以識別營業秘密範圍」會對應到管理規範第4單元「營業秘密的確定」章節;「(二)監控」會對應到管理規範之第5單元「營業秘密的使用管理」及第7單元「網路與環境設備管理」;「(三)使用行為管制」會對應到管理規範之第5單元「營業秘密的使用管理」;「(四)人員管制」會對應到管理規範之第6單元「員工管理」與第8單元「外部活動管理」。 管理規範除了提供更加多元完善的管理做法(如定義出的營業秘密應進行機密分級、設定保密期限建立管理清單;除了管制流通、複製行為,後端的銷毀或使用紀錄留存、預警措施之建立也很重要;對於員工的管控不僅是離職時,更是從入職時就有風險需要管控;或者更後端的爭議處理機制、監督與改善機制之建立等)以外,更重要的是,管理規範納入了企業應考量的相關法律風險,以「(二)監控」之建議為例,管理規範第6.3.2條進一步要求應對員工進行「宣導」,告知員工「會監控其使用營業秘密行為並保存相關電磁紀錄」,此規定對於企業而言十分重要,因為若未進行告知,可能會因為侵害員工的隱私權,違反刑法妨害秘密罪以及通訊保障及監察法之違法監察通訊罪,而使雇主被判刑。 由此可知,企業在建立營業秘密合理保密措施之相關機制時,亦需要注意措施的完善與合法性,企業除了可參考管理規範系統性建立營業秘密管理機制外,亦可以此管理規範做為檢視自身管理措施符合性之依據,進而促進企業有效落實營業秘密管理。 [1]Federal Trade Commission, FTC Announces Rule Banning Noncompetes (2024), https://www.ftc.gov/news-events/news/press-releases/2024/04/ftc-announces-rule-banning-noncompetes (last visited May 15, 2024). [2]Consultation outcome Measures to reform post-termination non-compete clauses in contracts of employment, GOV.UK, https://www.gov.uk/government/consultations/measures-to-reform-post-termination-non-compete-clauses-in-contracts-of-employment#full-publication-update-history (last visited Jun. 19, 2024). [3]同前註,引述原文:「The government will introduce a statutory limit on the length of non-compete clauses of 3 months and will bring forward legislation to introduce the statutory limit when parliamentary time allows.」。 [4]Q&A: Trade secret disputes, Financier Worldwide Magazine, Financier Worldwide Magazine, https://www.financierworldwide.com/qa-trade-secret-disputes (last visited Jun. 05, 2024). [5]<營業秘密保護管理規範>,財團法人資訊工業策進會科技法律研究所網站,https://stli.iii.org.tw/publish-detail.aspx?no=72&d=7212(最後瀏覽日:2024/06/14)。

TOP