加拿大反垃圾郵件法的施行可能衝擊電子商務產業

  加拿大政府於2010年12月通過反垃圾郵件法,並將於2011年底前生效,加國訂定此法律目的在於藉由遏止垃圾郵件、身分盜用、網路釣魚、間諜軟體、病毒、殭屍網路及誤導性的商業表示等行為,建立新的規範機制與罰則,解決此類線上威脅,從而促進電子商務發展。

 

  目前引發兩派看法,自電子商務角度以觀,企業經營者倚賴電子郵件與消費者互動,而新法要求企業經營者在發商業行銷郵件前須先獲得同意,且必須有明確的取消訂閱機制供收信人選擇。雖在交易過程中獲得的電子郵件地址,將被視為已默示同意發送信息,但只能於最後一次購買日期後兩年內發信,如此企業必須另外建立符合法令規定的郵件清單並加以管理,對企業經營者而言著實是一種負擔。且因為新法定有罰則,若違反法令,加拿大廣播及電訊管理委員會(Canadian Radio-television and Telecommunications Commission, CRTC)有權對個人處以最高100萬元的行政罰款,對公司最高罰款可達1,000萬元,如此使因業務需要而發送大量電子郵件的公司,包括電信公司、銀行等感到惶惶不安。同時另一方面有論者質疑此法律的執行成效,因大部分的垃圾郵件非自加拿大當地所發出,要如何達到減少並遏止前述線上威脅,效果存疑。

 

  另一派見解則認為,在此法案通過前,加拿大是八大工業國中,唯一没有具體的垃圾郵件管理辦法的國家。雖然此法影響電子商務產業,然而知名企業也可能會濫發商業郵件,且縱使發送郵件公司並非在加拿大本地發送垃圾郵件,其未必在加拿大無分支機構,垃圾郵件確實對加拿大人民造成損害,因此制定並施行反垃圾郵件法是必要的。

相關連結
※ 加拿大反垃圾郵件法的施行可能衝擊電子商務產業, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5539&no=67&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
歐盟隱私工作小組支持擴大通知義務之業者範圍

  歐盟隱私權工作小組(working party)日前公布其對「隱私與電子通訊指令」(Directive on Privacy and Electronic Communications, 2002/58/EC)之修正意見,藉此重申支持個人資料外洩通知責任立法之立場,並建議擴大適用通知責任之業者範圍至涉及線上交易之電子商務之服務提供者。此項建議隨即遭到歐盟理事會及委員會之反對,認為通知責任應僅限於電信公司,而不應擴及其他電子商務服務提供者。   歐盟隱私權工作小組於2009年2月初提出的報告指出,個人資料外洩通知責任法制(Data Breach Notification Law)之建立對於資訊社會服務(Information Society Service)之發展是必要的,其有助於個人資料保護監督機構(Data Protection Authorities)執行其職務,以確認受規範之服務提供者是否採取適當的安全措施。再者,亦可間接提高民眾對於資訊社會相關服務使用之信心,保護其免於身份竊盜(identity theft)、經濟損失以及身心上之損害。   然而,歐盟理事會及歐洲議會則反對該項修正建議,其一方面認為不應擴張資料外洩通知責任制度適用之業者,另一方面則認為對於是否透過法制規範課予業者通知之義務,應由各國立法者決定是否立法,甚或由業者依資料外洩情形嚴重與否,來判斷是否通知其各國個人資料保護相關組織及客戶。此外,參考外國實施之成效,美國雖有多數州別採用資料外洩通知責任制度,但並非所有的隱私權團體皆肯認該項制度;英國資訊委員會對於該制度之成效則仍存質疑,因從過去為數眾多的個人資料外洩事件看來,其效果已逐漸無法彰顯。   雖然歐盟個人資料保護官(European Data Protection Supervisor)與歐盟隱私權工作小組之看法一致,但其與歐洲議會與歐盟理事會仍存有歧見,對於個人資料外洩通知責任制度之建立,似乎仍有待各方相互協商尋求共識,方能決定是否納入歐盟隱私及電子通訊指令之規範。

日本健康保險擴大遠距醫療適用對象並提高支付標準

  日本厚生勞動省對於利用電話、視訊等資通訊機器所為之遠距醫療,因應明年修正健康保險診療報酬,提高遠距醫療服務給付項目及支付標準,為了明確適用健康保險之相關要件與規定,成立研究委員會以作成相關適用指引。隨著資通訊技術發展,利用資通訊機器所為之遠距醫療漸漸普及。在擔保醫療之安全性、必要性及有效性下,為了更進一步普及並推進適當之診療,有必要整備相關法令規定。厚生勞動省於11月設置研究委員會,預定在2018年3月底前訂定「遠距醫療適用指引(情報通信機器を用いた診療に関するガイドライン)」。   日本1948年制定之醫師法第20條規定醫師非親自診療,不得為治療等行為。此一規定迄今未修正,遠距醫療並非當時所能想像與規範。目前,厚生勞動省以函釋通知方式,對於該條之適用為相關通知與事務聯絡,以擴大遠距醫療適用之可能性。厚生勞動省於1997年第一次發出之通知(平成9年12月24日健政發第1057號厚生省健康政策局長通知),對於遠距醫療與醫師法第20條的適用關係提出基本見解,認為醫師法第20條親自診療原則規定,不一定等於直接見面診療,以代替方式而對於病患身心狀況得以獲得有用資訊下,使用遠距醫療並非違反本條親自診療規定。在本號通知「留意事項」中,對於遠距醫療之適用對象地區與病患,有以下規定:1. 初診原則上必須為面對面診療;2.直接面對面診療有困難之離島及偏遠地區;3. 對於病況穩定之病患,在確保緊急對應處理及聯絡體制下,以「別表」列舉適用之慢性疾病(例如:居家氧氣治療病患)為對象。但是本來只是例式規定的「非初診」「離島及偏遠地區」、「特定慢性疾病」,卻被解釋成限定列舉規定,導致遠距醫療適用範圍非常狹窄,變成原則禁止之情形。   直至2015厚生勞動省再發出通知(平成27年8月10日厚生勞動省事務連絡),明確非初診、離島及偏遠地區、「別表」所列舉之慢性疾病等,僅是例式規定,對象地區及病患不限於此,以及就算是初診,直接為親自診療有困難時,基於病患要求下充分考量病患有利條件下,依據醫師之判斷,活用各種可能之工具,結合社交網路服務(SNS)、視訊影像以及電子郵件等方式組合而為適當之遠距醫療。於「別表」列舉遠距醫療之九種病患對象為,居家氧氣治療病患、居家罕見疾病病患、居家糖尿病患、居家氣喘病患、居家高血壓病患、居家過敏性皮膚炎病患、褥瘡居家療養病患、居家腦血管病患以及居家癌症病患等。   2015年通知使得遠距醫療之適用對象範圍大為擴大,因此日本醫療院所積極整備資通訊設備環境。同時,厚生勞動省在2017年底提出之2018年度福祉預算中,明確修正健康保險診療報酬,提高遠距醫療之醫療服務給付項目與支付標準,使得利用遠距醫療為診療服務之利益大為提高,更加速提高遠距醫療之利用可能性。惟,前述2015年通知之內容,對於適用對象與診療內容,尚有不明確之處,因此邀集醫療、法學、遠距醫療專門等12名專家成立研究委員會,以訂定明確適用規則,防止未來對於病患造成不利益之判斷。

美國政府於2015年10月公告美國創新戰略最新版本

  美國創新戰略(A Strategy for American Innovation)於2009年9月首次提出,後於2011年2月配合時事及產業發展增補內容。隨著政策的逐步推行,美國國家經濟委員會及白宮科技政策辦公室於2015年10月公布最新版本之美國創新戰略,在原有的框架增補更多內容成為六大重要施政要項,在策略佈局上又大致可分為創新資源整合的三大創新基礎以及三大策略發展方向,前者包括:(1)投資創新基石;(2)刺激私部門進行創新活動;(3)營造一個創新者國度。後者的三大策略發展方向則包括國家產業重要優先發展領域的技術突破,其影響意味著確定重點投資領域能夠取得變革性結果,以滿足國家和世界所即將面臨的社會議題挑戰。其中諸如精準醫療(precise medicine)、加速發展新型神經技術、推動衛生保健的突破性創新、採用先進車輛減少死亡事故、建設智慧城市、推動再生能源技術提高能源效率、開發先進教育技術、發展太空科技等。   其次,係藉由投資未來產業,建設包容性創新經濟,加強美國先進制造的領先地位,創造工作機會和經濟的持續成長。最後,借助於人才、創新思維及技術工具的適當組合,建設創新型政府,為民眾提供更好的行政服務。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP