西班牙政府要求網路搜尋引擎業者Google刪除有關於90位公民之個人資料搜尋結果。西班牙政府主張當事人具有「被遺忘之權利」(the right to be forgotten),但Google認為西班牙政府之要求將衝擊表達自由之權利。目前全案已進入訴訟程序。
該事件之主因為西班牙民眾發現透過網路搜尋引擎,可以搜尋包含地址、犯罪前科等個人資料。經民眾向西班牙隱私權保護機關(Spain Data Protection Agency)提出申訴後,西班牙政府命令Google刪除申訴民眾之個人資料之搜尋結果。
然而,Google的全球隱私顧問Peter Fleischer於個人部落格中提出個人意見,表示目前歐盟並未對於推行之「被遺忘之權利」給予明確定義,此舉將引起資訊科技發展與法律規範間之爭議。
近來歐盟所進行之民意調查指出,多數歐洲人希望能夠隨時要求網路公司刪除於網路上公開之個人資料,也就是希望擁有「被遺忘之權利」。所謂「被遺忘之權利」,係指只要是於網路上流傳且容易被搜尋之個人資訊,例如年代久遠或是令人尷尬的內容,當事人皆有權利要求刪除。
然而,根據1995年歐盟隱私保護指令(EU Data Protection Directive)所制定之各國個人資料保護法,對於「被遺忘之權利」並無著墨。故有些專家認為,為因應資訊科技之發展,應透過個人資料保護法制之修訂,確認此權利之存在,以避免模糊不清之情形。
美國網路搜尋龍頭Google於2009年11月提出一項以7億5千萬美金收購行動廣告網絡商ADMob的計畫,大張旗鼓地準備涉足這個目前於所有廣告型態中,規模相對微小的區域。然而,美國二大消費者團體Consumer Watchdog及Center for Digital Democracy卻不認同這項收購計畫,甚至認為Google此舉將使其於行動廣告市場中形成獨占,以及甚有侵害消費者隱私權的可能,從而向聯邦交易委員會(Federal Trade Commission, FTC)喊話,要求FTC阻止Google此次的商業併購行為。 然而,消費者團體的擔憂亦非毫無道理,蓋Google在網路搜尋與線上廣告均有難以撼動的地位,而ADMob目前在行動廣告市場之佔有率亦為前茅,是故兩者一旦合併,消費者團體認為,Google此舉即是在為自己日後於此一極具發展潛力的市場中,先行買下一席位子。此外,由於GPS技術的發達,Google附加的Google Map定址應用更有可能因其實質跨足提供行動服務而有侵害使用人隱私權的可能。 雖言如此,FTC仍未明確表示對該項交易的意見,此外,無獨有偶地,蘋果電腦對行動廣告的市場亦開始有所行動,根據另一行動廣告服務提供者Quattro Wireless指出,蘋果公司正在計畫其中的細節。由此可見,不論FTC最後的結論為何,資訊業者之於行動廣告的戰爭已經開始。
荷蘭與德國率先成立GO FAIR國際支援與合作辦公室,推動歐洲開放科學雲歐洲開放科學雲(European Open Science Cloud, EOSC)旨在整合現有的數據基礎設施以及科研基礎設施,為歐洲研究人員與全球科研合作者提供共享的開放資料服務。為此,荷蘭與德國於12月率先成立GO FAIR國際支援與合作辦公室(The GO FAIR international support and coordination office, GFISCO)。荷蘭辦公室坐落於萊頓,並由荷蘭政府與萊頓大學醫學中心(Leiden University Medical Center)所共同出資設立。 該辦公室之成立源自於GO FAIR計畫,GO意即全球開放(The Global Open)、FAIR則分別係指可發現(Findable)、可連接(Accessible)、共同使用(Interoperable)和可重複使用(Re-usable),其目標在於跨越國界,開放目前科研領域現有的研究數據,係為邁向歐洲科學雲之里程碑。 荷蘭與德國曾於2017年5月時,發表聯合立場聲明書以展現推動歐洲開放科學雲以及全力支援GO FAIR計畫之企圖心,此次辦公室之設立為,包含以下主要任務: 支援由個人、機構、計畫組織等各方所組成的GO FAIR實踐網絡(GO FAIR Implementation Networks, INs)之營運工作。 進行GO FAIR實踐網絡之協調工作,以避免重複或壟斷之情形發生。 透過教育支援等方式倡議推行GO FAIR計畫。 GO FAIR國際支援與合作辦公室主要之角色為提供建言,而非幫助GO FAIR計畫做決策,若無達成預期效果或是缺乏明確的工作計畫時,該辦公室則可提供相關服務,以協助達成預期目標,並協助處理行政上之相關議題。
法國CNIL發布針對應用程式的隱私保護建議在民眾越來越依賴行動裝置的應用程式進行日常活動的年代,諸如通訊、導航、購物、娛樂、健康監測等,往往要求訪問更廣泛的資料和權限,使得應用程式相較於網頁,在資料安全與隱私風險上影響較高。對此,法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)於2024年9月發布針對應用程式隱私保護建議的最終版本,目的為協助專業人士設計符合隱私友好(privacy-friendly)的應用程式。該建議的對象包含行動裝置應用程式發行者(Mobile application publishers)、應用程式開發者(Mobile application developers)、SDK供應商(Software development kit, SDK)、作業系統供應商(Operating system providers)和應用程式商店供應商(Application store providers),亦即所有行動裝置生態系中的利害關係者。以下列出建議中的幾項重要內容: 1. 劃分利害關係者於手機生態系中的角色與責任 該建議明確地將利害關係者間作出責任劃分,並提供如何管理利害關係者間合作的實用建議。 2. 改善資料使用許可權的資訊提供 該建議指出,應確保使用者瞭解應用程式所請求的許可權是運行所必需的,並且對資料使用許可的資訊,應以清晰及易於獲取的方式於適當的時機提供。 3. 確保使用者並非受強迫同意 該建議指出,使用者得拒絕並撤回同意,且拒絕或撤回同意應像給予同意一樣簡單。並再度強調應用程式僅能在取得使用者知情同意後,才能處理非必要資料,例如作為廣告目的利用。 此建議公布後,CNIL將持續透過線上研討會提供業者支援,協助其理解和落實這些建議。同時,CNIL表示預計於2025年春季起,將對市面上應用程式實行特別調查,透過行政執法確保業者遵守相關隱私規範,尤其未來在處理後續任何投訴或展開調查時,會將此建議納入考慮,且會在必要時採取糾正措施,以有效保護應用程式使用者的隱私。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} .Psrc{text-align: center;}
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。