本文為「經濟部產業技術司科技專案成果」
隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。
日本通過《減少食品損耗促進法》隨著地球人口增加,糧食問題日益嚴重,而土地資源有限及氣候變遷也影響著產量。除了開源—提升糧食產量之外,如何節流—減少糧食浪費,也成為各國重要課題。日本為因應聯合國永續發展目標(SDGs)中的具體目標12.3:「在2030年之前,達到減少生產供應鏈糧食損失,同時掌握消費端食物浪費流向。」並改善國內食物大量損耗的問題,參議院於2019年5月24日表決通過由跨黨派議員聯盟提出的《減少食品損耗促進法》(食品ロス削減推進法)。有鑑於日本的循環型社會法制體系中,已有以實現食品環保3R(Reduce, Reuse, Recycle)為目的之《食品循環利用法》(食品リサイクル法),《減少食品損耗促進法》要求中央及地方政府在依既有相關法規,實施食品廢棄物減量時,也應考量本法之目的和內容,適當地推行措施。 《減少食品損耗促進法》將「減少食品損耗」定義為:「防止仍能食用的食品不被廢棄之社會性措施。」並定義「食品」 係除《醫藥品、醫療機器等法》第2條第1項所稱之「藥品」、同條第2項所稱之「醫藥部外品」及同條第9項所稱之「再生醫療等製品」以外之飲品及食物。 依《減少食品損耗促進法》之規定,未來內閣府將設立名為「減少食品損耗促進會議」(食品ロス削減推進会議)之專責機關,制定減少食品損耗的基本方針,並審議相關重要事項及推動政策之實施,而地方政府也應努力制定具體的相關促進計畫。本法也鼓勵企業與中央和地方政府合作,積極減少食物廢棄物,同時希望消費者自主採取行動。「減少食品損耗」作為從食品的生產到消費各階段的重要目標, 將成為新的全民運動。
美國發布《新興科技優先審查架構》 加速政府機構導入AI技術美國聯邦總務署(General Service Administration)於2024年6月27日發布《新興科技優先審查架構》(Emerging Technologies Prioritization Framework),該架構係為回應拜登總統針對AI安全所提出之第14110號行政命令,而在「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下簡稱FedRAMP)底下所設置之措施。 一般而言,雲端服務供應商(cloud service providers)若欲將其產品提供予政府單位使用,需依FedRAMP相關規範等候審查。《新興科技優先審查架構》則例外開放,使提供「新興科技」產品之雲端服務供應商得視情況優先審查。 現階段《新興科技優先審查架構》所定義之「新興科技」係為提供下列四種功能的生成式AI技術: 1.聊天介面(chat interface):提供對話式聊天介面的產品。允許用戶輸入提示詞(prompts),然後利用大型語言模型產出內容。 2.程式碼生成與除錯工具(code generation and debugging tools):軟體開發人員用來協助他們開發和除錯軟體的工具。 3.圖片生成(prompt-based image generators):能根據使用者輸入之文字或圖像而產生新圖像或影像的產品。 4.通用應用程式介面(general purpose API):基於API技術將前述三項功能加以整合的產品。 美國政府為挑選最具影響力的產品,要求雲端服務供應商繳交相關資料以利審查,例如公開的模型卡(model card)。模型卡應詳細說明模型的細節、用途、偏見和風險,以及資料、流程和參數等訓練細節。此外,模型卡應包含評估因素、指標和結果,包括所使用的評估基準。 《新興科技優先審查架構》第一波的申請開放至2024年8月31日,且FedRAMP將於9月30日宣布優先名單。這項措施將使生成式AI技術能夠以更快的速度被導入政府服務之中。
美國政府強化推動「更佳建築倡議」計畫美國總統歐巴馬於2011年2月3日,根據美國振興方案(Recovery Act)預算案,宣布推動「更佳建築倡議」(Better Buildings Initiative)計畫,這個倡議計畫承諾透過一系列的獎勵,促進私人企業在建築節能改善上進行投資,並以到2020年要讓商業建築的能源效率提高20%做為目標。 在今年的6月19日,美國能源部與商業部共同宣布選定三個「卓越建築營運中心」(Centers for Building Operations Excellence),由美國能源部和商務部國家標準與技術研究院的製造業擴展夥伴關係(National Institute of Standards and Technologies’ Manufacturing Extension Partnership,NIST MEP)聯合資助130萬美元成立此三個中心,乃為推動「更佳建築倡議」計畫的相關行動之一,希望藉由三個中心的運作,來達成提高能源效率20%,並且期望一年可以減少約400億美元的能源支出。 「卓越建築營運中心」將會與各大學、地方社區、技術學院、貿易協會,以及能源部的國家實驗室合作,建立培訓計劃,提供商業建築專業人士所需要的關鍵技能,以提升建築效率,同時降低了能源的浪費和節省資金。 此三個中心分別位於加州、賓州以及紐約州,提供機會讓當前和未來有可能參與潔淨能源經濟的人,學習寶貴的技能,並且著重在於開發課程以及試點培訓方案,以培育優良的建築的經營者、管理者與能源服務供應商,進行商業、工業與教育建築物上的調整與能源管理。