本文為「經濟部產業技術司科技專案成果」
根據美國國家安全執法機構(US national security and law enforcement agencies)之要求,美國聯邦航空總署(Federal Aviation Administration,以下簡稱FAA)於2017年9月28日,依照聯邦法規(Code of Federal Regulations)第99.7條規定,發布無人機飛行規則,禁止任何人於多個旅遊地點邊界範圍400英尺內飛行無人機。美國聯邦調查局(FBI)局長Christopher Wray表示,「擔心恐怖分子會使用無人機進行攻擊。」 從FAA的公告中,禁止無人機飛行之限航區係由FAA和內政部(Department of the Interior,以下簡稱DOI)共同指定,包括:紐約自由女神像(Statue of Liberty National Monument)、波士頓國家歷史公園(Boston National Historical Park)、費城獨立國家歷史公園(Independence National Historical Park)、加州福爾索姆水壩(Folsom Dam)、亞利桑那州格倫峽谷大壩(Glen Canyon Dam)、華盛頓州大古力大壩(Grand Coulee Dam)、內華達州胡佛水壩(Hoover Dam)、密蘇里州傑弗遜國家擴張紀念公園(Jefferson National Expansion Memorial)、南達科他州拉什莫爾山國家紀念公園(Mount Rushmore National Memorial)、加州沙斯塔壩(Shasta Dam)。以上具體位置皆屬DOI管轄地區,也是FAA第一次將無人機之空域限制規定於DOI地標上,目前FAA仍對軍事基地進行類似空域限制。 限制無人機飛行之規則將於2017年10月5日生效,違反空域限制者,將採取法律行動,包含民事處罰和刑事追訴。只有少數例外情形,允許無人機在限制區內飛行,且必須和個別場所或FAA進行協調。FAA表示,正依聯邦法規第99.7條配合考慮其他聯邦機構對於無人機之其他限制要求。
美國《代幣分類法》(Token Taxonomy Act)草案目前,美國證券管理委員會(U.S. Securities and Exchange Commission, SEC)對於數位貨幣的態度傾向於將代幣視為有價證券。《代幣分類法》(Token Taxonomy Act)草案則是持反對意見的聲浪¬,由美國眾議員Warren Davidson為首,並且獲得跨黨派多位眾議員的支持。《代幣分類法》主要的訴求是希望可以將數位代幣排除於證券,進而排除虛擬貨幣之稅務。重點有三: 修正《證券交易法》,將數位代幣排除於證券 將「數位代幣」(Digital Token)定義為驗證交易或遵循規則防止交易被竄改之「數位單元」(Digital Unit,以電腦可讀取的形式儲存,用於表彰經濟、財產上權利,或存取權限)。同時,在原先「證券」(Security)的定義中,排除「數位代幣」;另將證券「交易」(Exchange)交易排除數位貨幣適用。 擴張銀行之定義 修改「銀行」之定義。原先《1940年投資顧問法》和《1940年投資公司法》所指之「銀行」,包括「取得存款或執行信託權利(Fiduciary Powers)」等與准許經營銀行執行雷同事業者,是否為公司不在所問(Incorporated)。《代幣分類法》將之擴張為「取得存款、提供保管服務(Custodial Services)或執行信託權利」。 修正將虛擬貨幣視為免課稅對象 虛擬貨幣(Virtual Currency)定義為表彰數位價值之交易媒介且不是貨幣。並修正美國《1986國內所得稅法》(Internal Revenue Code of 1986),將虛擬貨幣交易視為免課稅之交易,並將總額小於600美金的虛擬貨幣買賣或交易之所得,排除於總收入(Gross Income)之外。 然而,目前美國證券管理委員會的態度仍未改變,並且於2019年4月3日發表〈數位資產「投資契約」分析之架構〉(Framework for “Investment Contract” Analysis of Digital Assets)。該分析架構說明:凡符合Howey Test之標準的「投資契約」即屬於「證券」,有《證券交易法》的適用。〈數位資產「投資契約」分析之架構〉甫發表,Warren Davidson與另外五位眾議員隨即重新提起2019年版的《代幣分類法》草案,是繼2018年9月、2018年12月第三度提起相關法案。楊安澤(Andrew Yang,美國首位角逐總統的華裔候選人)在2020年民主黨黨內總統初選政見中,亦援引《代幣分類法》草案,希望可以與連署《代幣分類法》草案的美國國會議員和懷俄明州(Wyoming)的立法者,共同擘畫有利於商業與人民的數位資產框架。
美國上訴法院營業秘密判決關於軟體功能之合理保密措施認定2022年3月9日美國聯邦第二巡迴上訴法院(下稱上訴法院)於Turret Labs USA, Inc. (下稱Turret) v. CargoSprint, LLC(下稱CargoSprint)案,維持紐約東區聯邦地區(下稱原審法院)的結論,駁回Turret的請求。依照上訴法院判決的結論,確認在原告主張軟體功能被盜用時,必須證明其與軟體供應商及使用者均簽訂保密協議,始符合保護營業秘密法(Defend Trade Secrets Act,DTSA)所定之營業秘密。 2021年2月Turret指控CargoSprint及其CEO,以詐欺的方式,進入其授權Lufthansa Cargo Americas(下稱Lufthansa)使用的Dock EnRoll軟體,並對於軟體的技術資訊及演算法,進行逆向工程,盜用其營業秘密。CargoSprint則抗辯Turret所主張者,不成立營業秘密。 對於軟體功能的合理保密措施認定標準,不論是原審法院及上訴法院均指出,應在於「誰被允許接觸」及「保密協議」。首先,對於「誰被允許接觸」之認定,原審法院指出Turret完全把軟體控制權委由Lufthansa,而Lufthansa使其顧客了解Dock EnRoll軟體功能。上訴法院則指出雖然Lufthansa已限制僅得貨運代理相關的使用者,能夠接觸軟體,但Turret並不能證明其與Lufthansa達成協議,由Lufthansa作出前述的軟體使用者限制。其次,對於「保密協議」之認定,不論原審法院及上訴法院均指出Turret未能證明其與Lufthansa及其他軟體使用者已簽訂保密協議。綜上所述,兩審級法院均認為Turret未採取合理保密措施。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展 人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊 人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。 目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。 在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題 人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。 有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。 針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。 人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。