作為鄉村音樂發源地的美國田納西州,有著蓬勃的音樂產業,匯聚來自各路的表演藝術工作者,因而對相關從業者的個人公開權(Right of Publicity)保障尤為重視,早在1984年即制訂《個人權利保護法》(Personal Rights Protection Act),確保該權利不會因權利人死亡而消滅,屬於可由他人繼承之財產權,允許繼承人自由轉讓和授權,包含其姓名(Name)、肖像(Image)、形象(Likeness)之權利主張,但被繼承人之聲音仍不在權利主張的範疇。 惟現今AI深偽仿聲技術所生成之音樂亦可能侵害音樂人及藝術家的智慧財產權,因而於2024年3月21日由州長簽署《確保肖像、聲音和圖像安全法案》(Ensuring Likeness Voice and Image Security Act),簡稱貓王法案(ELVIS Act),該法案於3月7日獲得州議會兩黨一致支持,首度明確將個人公開權得主張之範圍擴及至表演者的聲音(NIL+V),其目的是為了應對AI生成音樂的突破性進展,以保護音樂創作人及表演藝術家之權利免受AI技術侵害,這是全美首部禁止他人未經授權使用或重製權利人的聲音以供訓練AI模型或生成深偽內容所制定的法律(註:加州雖已將聲音作為權利保護客體但非針對AI技術之侵害),明確規定第三人在未得本人之同意下,若意圖利用AI深偽技術生成經仿製、偽造或變造的圖片、影音、聲音等數位檔案,而後續冒用本人名義進行公開發表或公開演出詞曲創作人及表演藝術工作者之聲音或影像的行為,則須承擔相應的民事侵權行為責任,以及構成歸類在微罪的刑事犯罪,刑期最高可處11個月又29天的監禁或2,500美元以下的罰金,該法案預計於今年7月1日生效,且僅適用於在田納西州境內的工作者。 該法案所保護之主體除音樂創作人及表演藝術家外,亦包含動畫配音員及串流媒體盛行下廣播與網路節目的播音員(俗稱播客),以確保這類主要仰賴聲音維生的工作者能免於AI仿聲技術而減損其專業價值;另外若有與詞曲創作人或表演藝術工作者締結專屬合約之唱片公司或經紀公司亦為訴訟程序的適格當事人,可代理公司旗下的工作者尋求救濟管道;最後,若利用權利人的姓名(Name)、肖像(Image)、形象(Likeness)或聲音(Voice)屬於法案中列舉的合理使用行為,如基於公益目的、新聞播報、轉化性使用、偶然入鏡或著作之附帶性利用等,則應屬美國憲法第一修正案之保障範圍而非在該法案的規範射程。 除田納西州之外,美國尚有其他39個州提出或正在推動相似的法案,但全美目前仍欠缺統一性的立法;聯邦政府仍尚在研擬如何保護表演藝術工作者個人公開權的階段,日前在田納西州政府今年1月時提出貓王法案的草案後不久,由美國眾議院議員組成的跨黨派小組曾公佈《禁止人工智慧偽造和未經授權的重製法案》(或稱為《禁止人工智慧詐欺法案》),旨在推動建立聯邦層級的框架性立法,以確保個人的聲音或肖像權屬美國憲法第一修正案的保障範圍,而該提案據稱是針對美國參議院去年10月提出的《鼓勵原創、培育藝術和維繫安全娛樂法案》(或稱為《禁止仿冒法案》)的更新及補充,以維護公共利益,創造具有原創性、正當性及安全性的休閒娛樂環境。
NHTSA要求自動駕駛系統及L2自動駕駛輔助系統回報意外事件美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)2021年6月29日 「自駕車與配備等級2駕駛輔助系統車輛之意外事件回報命令(Standing General Order 2021-01:Incident Reporting for Automated Driving Systems and Level 2 Advanced Driver Assistance Systems)」,課予系統製造商與營運商意外事件回報義務,重點如下: (1)適用範圍:全美境內公共道路上發生之車輛碰撞事件,事發前30秒至事件結束期間內曾經啟用等級2駕駛輔助系統或自動駕駛系統。 (2)意外事件定義:事件中任何一方有人員死亡或送醫治療、車輛必須拖吊、安全氣囊引爆或事件涉及弱勢用路人(vulnerable road user)。 (3)回報期限:須於知悉事件後隔日立即回報,知悉後10日傳送更新資料,如後續仍有發現新事證,應於每月15號傳送更新。自駕車發生碰撞,即使無人傷亡、無車輛拖吊或安全氣囊引爆,仍需於次月15號傳送事件回報。 (4)回報方式及項目:需至NHTSA指定網站註冊帳號,線上填寫制式通報表格。項目包含車籍資料、事件時間、地點、天候、路況、傷亡及財損情形等等。 NHTSA收到的回報資料,原則上會在將個人資料去識別化後對大眾公開,惟若系統製造上或營運商主張部分資訊為商業機密,可另行向NHTSA之諮詢辦公室通報審核。如逾期未報或隱匿資訊,可處每日最高22,992美元罰金,累計最高罰金為114,954,525美元。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。