日本特許廳(JPO)和中國人民共和國國家知識產權局(SIPO)於2011年10月18日合意簽署專利審查高速公路(Patent Prosecution Highway,PPH)試行方案。本方案欲藉由資源共享的方式,加快專利申請程序的官方審查期間。並預計於11月初開始施行,試行期間為期一年。透過這個方案,將使日本成為中國第一個PPH方案的合作對象。
隨著商業活動的全球性擴展,企業在各國獲取專利的需求性亦相對性地提升,造成單一申請案需個別向各國專利局申請的情況。因而造就全球性專利申請案件數量的攀升,以及專利審查期間的延長。為解決此問題,日本特許廳企圖以推行PPH模式,幫助申請人有效且及即時地獲取專利,以保障其國外專利權的行使。
傳統上大陸知識產權局審理日本專利申請案,通常需要經過二至三年的審查期間,透過這個試行方案,審查期間可望縮減至半年。
日本特許廳預計,這個方案將使日本企業以更迅速且有效的方式,保護其在中國的技術,進而協助日本企業順利地在中國經營商業活動。日本特許廳廳長表示,國際專利合作案不應該是種妥協,相反地,我們需要尋求一種可創造雙贏局面的新方式。
至於大陸方面,則預計與其他國家,如美國及南韓,簽署建立PPH的合作方案。
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
韓國成立國家生技委員會,推動生技三大轉型韓國政府於2025年1月23日成立國家生技委員會(국가바이오위원회),作為跨部會最高決策機構,整合生技、醫療、食品、能源、環境等領域政策。該委員會將推動《大韓民國生技大轉型戰略》(대한민국 바이오 대전환 전략),聚焦基礎建設、研發創新、產業發展三大轉型,重點分述如下: 1. 基礎建設轉型:韓國將成立「生技聚落協調機構」(바이오 클러스터 협의체),整合20多個生技聚落,讓各聚落共享設備、專家及創業支援,並與全球頂尖生技聚落交流。韓國計畫創造1萬個生技相關就業機會、培育11萬名生技專業人才,並推動生技監管創新。 2. 研發創新轉型:韓國期望透過AI技術應用,將新藥開發的時間與成本減半。此外,政府將提供資料共享的獎勵措施,簡化IRB及DRB審查流程,推動資料導向的生技研發。韓國計畫至2035年在國家生技資料平台上累積1000萬筆生技資料,並建構高效能運算基礎設施以提升分析能力。 3. 產業發展轉型:韓國將透過五個公共CDMO支援生技產業技術產品化,並推動AI導向的「K-BioMADE計畫」,促進生技製造的高速化、標準化與自動化。此外,政府將成立1兆韓元以上的「Mega Fund」,提供金融政策支持。韓國計畫至2032年將CDMO生產能力擴大至2.5倍,確保在全球市場佔據領先地位。 韓國政府擬透過「國家生技委員會」強化公私部門協作、優化法規環境及加速創新技術的商業化,為我國未來生醫政策發展提供寶貴的參考價值,值得持續關注。
Google數位圖書館計劃面臨著作權法爭議全球最大搜索引擎 Google公司於去年12月中宣布,已與美國紐約公共圖書館以及哈佛大學、史丹福大學、密西根大學、牛津大學合作,將數百萬冊藏書數位化讓網友免費瀏覽。此一計畫預計花十年時間建構,在2015年啟動,經費約估1億5000萬到2億美元之間 (The Google Print Program)。雖然此一構想極具創意,但是由於將館藏圖書數位化牽涉著作權爭議,因此由125家非營利學術出版機構組成的美國大學出版協會(AAUP)已針對若干疑點去函,希望Google能釐清著作權法上之疑慮,以利整體計劃之推動。 AAUP所持最重要依據係美國著作權法第107條有關合理使用之規定。AAUP質疑,以Google如此大規模,就圖書內容性質不加以區分,全面性的圖書數位化工程,恐怕無法符合著作權法所訂出的合理使用標準。蓋著作權法有關是否符合合理使用之界定標準,是以事實情況及個案之判別方式為主,故無法想像Google如何在未進行個別之判斷前,便能夠概括性的依此而主張其享有合法權利。事實上,Google之主張與法院實務界之認知存在極大落差。 此外, Google的數位圖書館計畫在許多細部執行事項上,仍存有許多疑點,導致原先欲加入的AAUP會員,無法確保圖書內容完成數位化後,對於以銷售書籍及授權為主要營收來源之出版社,恐會產生造成市場排擠效果之憂慮。 藉由數位技術雖然可以挑戰人類夢想的極限,但過程中涉及的法律層面問題,卻相當程度羈絆了夢想前進的速度。 Google的數位圖書館計劃再次印證了新興技術與現行法規不協調的窘況。就現有事實資料以觀,Google若未能與學術出版商妥善安排著作權引發之爭議,此一計畫未來是否能順利執行,恐怕存有極大疑問。
日本經產省發布「新創企業的經濟外溢效果」調查摘要為了解2022年公布《新創企業發展五年計畫》(スタートアップ育成5か年計画)(下稱新創計畫)後之情形,日本經濟產業省(簡稱經產省)針對新創企業造成之影響進行調查,於2024年7月22日發布「新創企業之經濟外溢效果」(スタートアップによる経済波及効果)調查摘要(下稱調查摘要),簡述如下: 1.新創企業之經濟貢獻:新創計畫期望透過新創企業提昇產業競爭力,並提供青年就業機會,故積極進行人才培育與輔導創業。根據調查摘要,自新創計畫執行後日本新創企業所創造之國內生產毛額(Gross Domestic Product, GDP)為10.47兆日元(約新台幣2.1兆元),若包含外溢效果(Spillover Effect)則為19.39兆日元(約新台幣3.88兆元),並創造52萬個就業機會。 2.新創企業改變經濟結構之潛力:根據調查摘要,過去10年間日本新創公司併購案件增長22%,顯示其經濟實力提升;且新創公司中女性主管的比例增加,亦顯示其可改善日本女性職場地位。 3.創投資金注入引發新創企業之外溢效果:新創計畫鼓勵創投公司投資新創企業,由於擁有更多之週轉資金,與未接受創投的企業相比,接受創投的企業在擴大就業和創新方面表現更佳。新創計畫推動後,目前日本創投對新創公司之投資金額增加7.8倍(70%之新創公司獲得創投公司投資),並創造13.94兆日元(約新台幣2.8兆元)之GDP。