知識發展研究中心於今年2014年第二次發布整體中國大陸智慧財產權的發展指標數,該單位往後將持續觀察深入研究並提供報告指標,以反應中國大陸於專利、商標、著作權等智慧財產權的發展狀況,以利引導國家智慧財產權戰略實施,進一步強化推動國家於智慧財產權事業與科技創新研發發展。 報告顯示,中國大陸知識產權局綜合發展指數在2013年有增加趨勢,不論在創造、運用、保護或環境等四項發展指數上,皆有穩定成長趨勢。報告中除地區特徵顯示出智慧財產權的發展與完備外,穩定的數據更突顯整體智慧財產權環境的完善。從世界排名第一的受理發明專利申請82.5萬件、受理通過PCT提交國際專利申請案2.2924萬件、連續12年居世界第一受理商標註冊申請共188.15萬件,以及首度突破百件著作權登記案等,顯示出中國大陸在智慧財產權的整體保護與落實推動。 另外,中國大陸知識產權局不斷在擴大智慧財產權的保護,由2012年至2013年共提升了1.79,侵害假冒偽劣案件上,執法移送與審判起訴案件皆有所成長,顯示出中國大陸對智慧財產權的保護重視與落實。尤其,在整體智慧財產權環境提升與優化上,指標顯示出由2012年至2013年明顯上升5.97,主要是專責服務機構、人員購置的逐年增加與穩定成長之因,亦使智慧財產權整體環境營造有優化、加速與強化的提升。
歐盟電子通訊市場之事前管制與界定 美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。