Google宣佈提供無線路由器擁有者可將其定位資料退出Google資料庫之機制

  全球搜尋引擎龍頭Google被發現於2008年3月至2010年5月間,透過其街道定位服務,違法蒐集位於荷蘭360萬個無線路由器(Wi-Fi routers)之資料。Google因其違法蒐集資料之行為,面臨140萬歐元之罰款。

  由於荷蘭相當重視隱私保護之概念,因此Google之作法引起社會之爭議,在荷蘭社會反彈之壓力下,Google於11月15日宣布,同意提供民眾將其住家地點或公司行號之無線路由器識別碼資料退出Google資料庫之機制。路由器之擁有者可透過更改服務設定識別碼(Service Set Identifier, SSID)之方式,退出Google定位服務之資料庫。荷蘭個人資料保護主管機關首長Jacob Kohnstamm認為,Google之舉對於消費者隱私之保護具有正面之幫助。

  Google所提供的定位服務主要是透過所蒐集之資訊,提供其開發的Android手機定位服務,利用所蒐集的定位資料使行動電話或者行動裝置之用戶得以定位其所在之位置,並且提供用戶當地氣象以及地圖資訊。除此之外,定位服務也增加Google對鄰近商號之廣告收益。Google實施退出資料庫之機制後,其必須另外以GPS系統進行定位,定位服務可能將發生不精確之情形,另外,也將使得行動裝置因需搜尋衛星訊號而耗費較多電力。Google全球隱私顧問Peter Fleischer指出,事實上Google的定位服務無法辨識個人資料,但Google認為提供退出資料庫機制更增進對於個人隱私之保護。

  歐洲各國對於Google所蒐集之無線存取資料皆有隱私保護之疑慮,因此,除了荷蘭外,目前Google也在法國公告提供此項退出機制,未來將進一步於全球實施。

相關連結
※ Google宣佈提供無線路由器擁有者可將其定位資料退出Google資料庫之機制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5584&no=67&tp=1 (最後瀏覽日:2025/12/26)
引註此篇文章
你可能還會想看
英國皇家內科醫學院等三個團體聯合發布基因檢測醫療之指引建議書

  近年隨基因檢測技術成熟及成本下降的影響,基於醫療診斷或照護目的,而對於血液、其他體液、細胞或DNA所進行之基因檢測行為已有逐漸增多的趨勢,惟基因資訊使用本身往往容易觸及倫理、道德或法律層面的爭議,導致專業醫療人員在實際為檢測時容易產生法規遵循上的困難;因此,若能有明確的程序或標準可供依循,將能大幅增進基因檢測技術的商業運用價值。   1. 有鑑於此,三個英國醫療團體-英國皇家內科醫學院(Royal College of Physicians)、英國皇家病理科醫學院(Royal College of Pathologists)及英國人類遺傳協會(British Society for Human Genetics)於今(2011)年9月聯合公布了一份『診療性基因使用行為的同意及秘密性:基因檢測及基因資訊的分享指引』報告書(Consent and confidentiality in clinical genetic practice:Guidance on genetic testing and sharing genetic information)。該建議書之主要目的即在於指引醫療人員在使用基因資料及樣本時,應如何遵循相關的法律規範,包括1998年資料保護法(the Data Protection Act of 1998)及人類組織法(the Human Tissue Act)等;內容上則涵蓋病患同意、基因醫療行為、家族史與醫療資訊的秘密性,以及當病患所提供之基因樣本可能作為研究用途時,應如何告知等事項。   建議書中特別強調當病患選擇接受基因檢測以獲得更好的診療建議時,基因資訊也開始對病患個人及其家族成員帶來的風險。基此,該報告對基因檢測行為提出三項主要建議:1. 基因檢測所得到的家族史及診斷資訊只有在其他家族成員出現健康照護(healthcare)需求時,才能進行共享,且必須在醫療人員不違反保密義務的前提下進行。2. 醫療人員應當告知病患包括基因調查對其近親屬的潛在好處、部分基因訊息可能會提供給家族親屬、基因檢測可能會得到不確定或非預期的發現、其所提供之樣本及基因資訊將如何被運用,以及該樣本若對於該類型之檢測具有相當重要性時,其檢測結果可能會被收錄於國家資料庫以作為未來醫療研究之用。3. 由於醫療干預行為可能會導致基因診斷(genetic diagnoses)結果的改變,所以應該由病患本人或專業醫師直接告知其親屬,此誤差所可能導致的遺傳風險(例如血友病患者的基因診斷結果發生誤差,可能導致其近親屬生下患有血友病的下一代)。   目前基因檢測技術雖已趨向商業化及普及化發展,但由於基因訊息一般被界定為個人隱私資訊,因此在使用、分享及儲存上有相當之限制規範,並造成醫療人員遵循上的難度。而英國皇家內科醫學院等三個醫療團體所公佈的這份指引建議書,在內容上聚焦於告知病患的程序及病患的同意,同時擬定明確的流程圖及同意表格供各醫療人員參考使用,相信對於未來英國基因檢測技術的普及化會有相當正面之幫助。

因應ChatGPT人工智慧趨勢,為企業提出營業秘密管理建議

2022年11月美國OpenAI公司推出人工智慧大型語言模型ChatGPT,提供全球使用者透過輸入文本方式向ChatGPT提出問題,雖營業秘密不需絕對保密,惟是否會「因向ChatGPT揭露營業秘密而使營業秘密喪失了秘密性」? 依OpenAI公司「非API訪問數據政策」規定,ChatGPT透過OpenAI公司的AI訓練人員審核「使用者上傳至ChatGPT的資訊」,提供ChatGPT反饋,強化ChatGPT進行有效的學習,讓ChatGPT模仿人類語言回覆使用者所提出的問題。在AI訓練人員未將「使用者上傳至ChatGPT的資訊」交由ChatGPT訓練、學習前(上次訓練是在2021年9月),此聊天內容不會成為ChatGPT給其他使用者的回答,此時資訊對於公眾仍具秘密性。依據ChatGPT的使用條款第5(a)條之單方保密義務規定:「OpenAI公司、其子公司及其他第三方公司可能賦予使用者『機密資訊的接觸權限』,但使用者僅限於使用條款所允許的服務中使用該些機密資訊,不得向第三方揭露該機密資訊,且使用者至少應採取合理的注意保護該機密資訊。所謂機密資訊係指OpenAI公司、其子公司及其他第三方公司(1)指定的非公開資訊,或(2)合理情況下,被認定為機密資訊者,比如軟體、規格及其他非公開商業資訊。」。即ChatGPT對於使用者輸入的聊天內容不負保密義務。 公司將程式碼、會議紀錄等敏感資訊與ChatGPT共享,不必然屬於「因揭露營業秘密而使營業秘密喪失秘密性」,考量訓練數據量大,秘密性取決於周遭環境與揭露性質,例如: 1.揭露的資訊類型,比如飲料配方可能會比客戶名單更容易取得。 2.揭露的環境,比如競爭對手、大眾是否能提出具體問題,以致能取得他人聊天內容的營業秘密。 為在ChatGPT的趨勢下確保營業秘密的秘密性,建議企業採取的管理策略如下: 1.透過「資訊分類」以識別可共享的資訊。 2.審核涉及敏感資訊的協議、公司政策及供應商契約。 3.採取實體、數位的資訊保密措施,並留意尊重員工隱私,比如限制接觸某些網站或應用程式,應留意員工的手機是否能繞過此限制。 4.建立公司保密文化,如透過公司培訓、新人入職教育訓練,定期提醒其應負擔的保密義務。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

美國加州公共事業委員會提出自動駕駛車輛試點計畫

  加州公共事業委員會(California Public Utilities Commission, CPUC)提出自駕車試點計畫,允許在未有配置人類駕駛之情況下測試自駕車,此次計畫包含兩個試點項目,將於5月被五人委員會審核,並決定是否批准。   第一個試點項目允許參與廠商之自駕車上路測試,並須配置經培訓的人類駕駛於自駕車內,以應付隨時的突發狀況;第二個試點項目則允許無人駕駛之自駕車上路測試,惟在無人類駕駛隨車之情況,必須符合加州機動車輛管理局(Department of Motor Vehicles, DMV)之規定,如遠端監控車輛狀態及操作,以保障乘客安全。   參與廠商必須定期向CPUC及DMV繳交營運報告,包含測試期間車輛碰撞(collision)及解除自動駕駛(disengagement)次數。   此次試點計畫已開放廠商申請,科技大廠及叫車服務公司如Google、Tesla、Uber以及Lyft等目前亦已正進行自駕車之設計與測試。若此提案通過,CPUC將進一步規劃自駕車載客服務之相關辦法,使自駕車測試之法制更臻完善。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

TOP