歐盟發布頻譜政策公眾諮詢書

  於今年 5 月中旬,歐盟無線頻譜政策小組 ( Radio Spectrum Policy Group ,以下簡稱 RSPG ) 對於是否允許使用用以提供廣播電視服務之頻段,提供多媒體服務 (multimedia services) 一事,表示意見並徵詢共眾意見,而所稱的多媒體服務係指於行動通信環境中,提供結合傳統廣播 ( 一對多 ) 以及通訊 ( 點對點 ) 的服務。於此次的公眾意見諮詢書中, RSPG 表示此次意見諮詢的目的旨在促進多媒體服務的提供,但亦指出多媒體服務的發展不應扭曲頻譜的整體使用規劃以及市場競爭。除此之外,亦不應與歐盟各會員國境內以促進文化及媒體多元化之媒介內容規範相左。而就如何導入多媒體服務一事, RSPG 考量核發新執照,或是重新檢視現有的執照制度,以允許業者得使用頻譜提供多媒體服務。此次的公眾意見諮詢將於 6 14 結束,其發展有待未來更進一步的觀察。

相關連結
※ 歐盟發布頻譜政策公眾諮詢書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=559&no=67&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
美國參議員提案修改股票選擇權(stock option)租稅處理優惠

  美國參議員Carl Levin最近提出一項名為「終止公司股票選擇權租稅優惠法」(Ending Corporate Tax Favors for Stock Options Act, S. 2116,以下簡稱:股票選擇權租稅優惠終止法)的草案,主要目的是希望改變公司對於股票選擇權費用化的租稅處理(tax treatment of corporate stock option deductions)。   就租稅意義而言,公司發給員工(包括高階經理人及一般員工)的股票選擇權為薪資的一種,而根據美國內地稅法規定,目前公司在申報股票選擇權的薪資支出(compensation expense)減項時,可以申報的費用比公司帳簿上所登載的更高。由於此一稅法上獨厚股票選擇權的處理,使得近年來許多美國企業支付給主要高階經理人的薪資,有一大部分是股票選擇權,此現象在科技產業亦甚為顯著,其結果造成公司高階經理人與一般員工的薪資差距越益擴大。   「股票選擇權租稅優惠終止法」要求公司於薪資支出項下申報的股票選擇權費用,必須與公司帳簿所記載的數目一致,同時,股票選擇權也應與其他類別的公司薪資費用一樣,同樣受到1百萬美元的費用上限之申報限制,至於股票選擇權申報費用的時點,則不須要等到選擇權行使(exercise)的年度。

Other Transaction(OT)於新創政府採購之應用

  今(2018)年2月,一家成立於2013年、位於美國維吉尼亞州的雲端策略服務公司REAN Cloud Llc.以其他交易(Other Transaction, OT)模式獲得了美國國防部(Department of Defense)5年合計9.5億美金的合約,讓OT自2016年10 U.S. Code §2371b正式生效進一步確認美國國防部針對原型(Prototype)及其後續之產品開發適用OT以來[1],再次引起討論。   OT源於冷戰時期的美國,主要用於讓聯邦政府部門取得尖端國防技術的研究與發展(Research and Development, R & D)成果和原型。OT並非傳統之契約(contract)、授權書(grant)或合作協議(cooperative agreement),且法並無明確定義OT究竟實質內容為何。OT不受聯邦併購規則(Federal Acquisition Regulation, FAR)所規範,更接近一般私人商業契約,因此具備極大的合作彈性,可大幅度縮短私部門與政府合作常碰到的冗長時程。由於OT快速、彈性的這兩項特質,近年來應用於國防以外之新創或尖端科技之公私合作亦逐漸普遍。   然OT雖然簡化了政府採購的時程與限制,但同時也減少了問責可能性和透明度,因此目前只限具備美國國會授予其他交易授權(Other Transaction Authority, OTA)的聯邦政府機構得以使用OT。在美國計有太空總署(NASA)、美國國防部、美國聯邦航空總署(Federal Aviation Administration)、美國運輸部(Department of Transportation)、國土安全部(Department of Homeland Security)、運輸安全管理局(Transportation Security Administration)、衛生與公共服務部(Department of Health and Human Services)、美國能源部(Department of Energy)獲得國會授予OTA,其餘未獲OTA之政府部門僅得以在聯邦預算管理局(Office of Management and Budget)主任授權下有條件地使用OT。   尖端技術的R&D在不同領域皆有其特殊性,難以一體適用FAR,是以OT在實務運作上為兼顧持有尖端技術的公司重視速度和營業秘密之特質與採購之公平性,其運作模式通常為:聯邦政府成立某種技術領域的OT聯盟(consortium),私部門的潛在締約者可以申請加入,繳交會費並同意該聯盟的約定條款。聯盟之約定條款通常較政府採購契約來的有彈性,例如智慧財產權的歸屬是以個案個別約定。擁有OTA之政府機關嗣後可向聯盟成員徵求產品或服務白皮書,之後再從中挑選優秀者進一步繳交更詳細的產品或服務計畫書,最終經由聯盟管理機構(consortium management organization)挑選出最適者。   OT與OT聯盟的運作模式,為公私合作提供極大的法律彈性,且非常迅速。平均而言,從政府徵求白皮書到成功找到最適者,不過兩個月時間。時間與彈性乃是新創企業或尖端技術持有者與政府合作時最有疑慮之處,OT可以解決此一問題。然需注意OT在適用上仍存在諸多挑戰,例如成效難以評估、較不透明導致監督困難、智慧財產權歸屬爭議等,有待克服。 [1] 美國國防部在此前乃是遵循Section 845 of the National Defense Authorization Act(NDAA) for Fiscal Year(FY) 1994, Public Law 103-160適用OT。

義大利發布最新全國性AI法案,預計設立醫療AI用平臺,並強化權利保護與病患福利

壹、義大利最新AI法案簡介 義大利於2025年9月17日通過《人工智慧規範與政府授權》立法法案(Disposizioni e delega al Governo in materia di intelligenza artificiale,下稱1146‑B法案),為該國首次針對AI全面立法,亦為歐盟成員國內AI專法先驅。義大利將歐盟《人工智慧法》(AI Act,下稱AIA)框架轉化為國內法,並設立獨立窗口與歐盟對接。為確保落地效率並兼顧國家安全與資料治理,本法採「雙主管機關制」,由隸屬於總理府(Presidenza del Consiglio dei Ministri)之數位局(Agenzia per l’Italia Digitale,AgID)及國家網路安全局(Agenzia per la Cybersicurezza Nazionale,ACN)共同執行。AgID 負責AI技術標準、互通性與公共行政實務執行;ACN則負責資安韌性、事故通報與高風險AI安全性。 目前該法案已由參議院(Senato della Repubblica)審議並表決通過,2025年9月25日已載於義大利《官方公報》(Gazzetta Ufficiale),再經過15天緩衝期後,預計於2025年10月10日正式生效。然截至2025年10月27日為止,未有官方宣布該法案正式生效之證明,故法案是否依該版本內容正式施行仍待確認。其中醫療為AIA顯示之高風險領域之一,亦涉及資料隱私與病患權益等敏感法益,可謂本法落地機制中具代表性之政策面向,故本文特以醫療AI應用為分析重點。 貳、設立醫療AI應用平臺,輔助專業醫護及強化醫療服務取得 1146‑B法案第10條規定,將由義大利衛生服務局(Agenzia nazionale per i servizi sanitari regionali,AGENAS)主導設立該國家醫療AI應用平臺。該平臺定位為全國級資料治理與AI導入審查機制工具,主要功能為對醫療專業人員提供照護病患與臨床實踐時無法律約束力之建議,並對病患提供接觸社區醫療中心AI服務之管道與機會。該平臺僅得依「資料最小化原則」(dati strettamente necessary)蒐集以上醫療服務所需之必要資料,經向衛生部(Ministero della salute)、資料保護局(Garante per la protezione dei dati personali)及CAN徵詢意見後,由 AGENAS 負責資料處理,並經地方常設協調會議同意後,得以公告方式制定符合歐盟《一般資料法規》(General Data Protection Regulation,GDPR)之風險控管與敏感健康資料處理細則。 在確保資料安全合規後,法案強調對醫療保健之服務可及性(accesso ai servizi)進行改善,病人能透過此平臺更便利地接觸到社區醫療中心所提供之各類AI健康醫療服務,如診斷輔助、數位健康檔案調閱等,亦符合AIA強調AI發展應確保社會公益等權利之宗旨。 參、醫療用AI之限制與目標 法案第7條第5項規定AI僅能作為醫療決策輔助工具提供無拘束力之建議,重申前述醫療平臺相關規定;AI亦不得根據歧視性標準選擇或限制病人獲取醫療服務。病人享有「知情權」(diritto di essere informato),即有權知悉診療過程中是否使用有使用AI、使用方式(如僅為輔助)及其限制。針對健康資料之隱私處理方面,如病歷、基因資料、診斷紀錄等,要求醫用AI系統須持續監測、定期驗證與更新,以降低錯誤風險,維護病人健康安全,亦明文強調醫療AI之使用應以改善身心障礙者生活為目標。 四、總結 1146-B法案在醫療 AI 治理上,透過雙主管機關制平衡歐盟對接、技術發展與風險控管,符合AIA要求並避免權責衝突。建立由 AGENAS 主導的醫療 AI 應用平臺,在相關部門意見下運作,確保資料處理與服務推動合規與安全。病人權利方面,強調知情權、健康資料隱私與地方醫療AI普及,符合資料最小化與 GDPR 規範,展現義大利在醫療 AI 上兼顧創新、透明與權益保障之立場,往後應持續關注AGENAS釋出之關於該平臺使用之相關細則。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP