伊士曼柯達(Eastman Kodak)於1月10日向美國紐約州羅徹斯特(Rochester)聯邦法院與國際貿易委員會(ITC)提起訴訟,控告蘋果、宏達電侵犯5項有關數位相機影像處理之專利,意圖以法律訴訟作為擴大專利權價值的手段。
目前擁有超過1000項影像技術專利的131歲老店柯達,試圖出售1000多項專利權及提出專利訴訟,以挽回面臨破產邊緣的危機。柯達認為蘋果侵犯4項和數位相機影像相關專利(美國專利字號7,210,161、7,742,084、7,453,605、7,936,391),其中包含使用者可直接透過網路或e-mail傳送相機內照片的技術。而宏達電除被控侵犯上述4項專利之餘,柯達亦向國際貿易委員會申訴宏達電侵犯第5項的影像預覽技術專利(美國專利字號6,292,218),之前柯達方以該專利起訴蘋果和RIM。柯達要求蘋果立即停售侵權產品,同時支付3倍損失賠償。相關人士表示,柯達一直在尋找願意買下該公司影像專利的業者,起訴科技龍頭舉動之目的在於尋求好買家。
除此之外,柯達亦宣布進行業務重組,從3個部門合併成為2個部門,雖然對外宣稱乃為節省成本開支、盼能轉虧為盈,不過在可能破產的疑慮下,柯達內部氣氛相當低迷,出售技術專利仍無進展,加上大批主管相繼離職,過去兩周有3位董事辭職,上周四CCO(Chief Communications Officer)Gerard Meuchner宣佈離職之後,開始傳言柯達募資未成,未來數周可能就會宣布破產。
ePrivacy指令修正背景 原資料保護指令將於2018年由一般資料保護規則所取代,在此一背景下,電子隱私指令除補充資料保護指令外,亦訂定關於在電子通訊部門的個人資料處理的具體規則。具體作法,如在利用流量和位置資訊於商業目的之前,應徵得用戶的同意。在ePrivacy指令未特別規定的適用對象,將由資料保護指令(以及未來的GDPR)所涵蓋。如,個人的權利:獲得其個人資料的使用,修改或刪除的權利。 歐盟執委會為進行ePrivacy指令(Richtlinie über den Datenschutz in der elektronischen Kommunikation)改革,於2016年8月4日提出意見徵詢摘要報告,檢討修正ePrivacy指令時著重的的幾個標的: (1)確保ePrivacy規則與未來的一般資料保護規則之間的一致性。亦即評估現有規定是否存在任何重複、冗餘、不一致或不必要的複雜情況。(如個人資料洩漏時的通知) (2)指令僅適用於傳統的電信供應商,而在必要時應該以新市場和技術的現實的眼光,重行評估更新ePrivacy規則。對於已成為電子通信行業新興創新的市場參與者,如:提供即時通訊和語音通話(也稱為“OTT供應商”),由於目前不需要遵守ePrivacy指令主要規定,而應納入修正對象。 (3)加強整個歐盟通訊的安全性和保密性。ePrivacy指令在規範上,確保用戶的設備免受侵入、確保通信的安全性和保密性。本指令第5條第3項,儲存資訊、或近用已存儲在用戶設備之資訊,需得其的同意。該條款的有效性已有爭論,因為新的追踪技術,如:指紋識別設備可能無法被現有的規則所涵攝。最後,有認需得同意的例外規定列表,有必要延伸到對資訊之其他非侵入性的儲存/近用:如網路分析等。這些都是應予以仔細評價和檢視之對象。 公眾諮詢摘要報告內容 經過4月13日到7月5日的公眾諮詢,歐盟執委會於8月4日提出報告。 諮詢意見主要來自德(25.9%)、英(14.3%)、比(10%)、法(7.1%)的回覆。 一、是否有必要在電子通訊部門訂定隱私特別規定? 市民與公民團體咸認有必要在電子通訊部門,甚至流量資料和位址資訊也應該訂定新規(83%)、企業則認為無甚需要,只有在秘密性規則(31%)與流量資料(26%)有需要訂定;主管機關則咸認需要特別規定。 二、現行指令是否已足達成其立法目的?76%市民和公民團體認為未達立法目的,理由如下: ePrivacy指令的範圍太狹小,不包括即時訊息、語音通話(VoIP)和電子郵件應用服務。 規範太模糊,導致會員國之間適用結果和保護程度的差異、不一致。 法律遵循的程度展法程度太差。 三、是否應為新通訊服務訂定新規? 76%市民和公民團體認為適用範圍應該涵蓋到OTT上。
美國聯邦貿易委員會推動「不留痕」機制,使消費者可選擇不在網路上留下個人資訊美國聯邦貿易委員會(Federal Trade Commission ,FTC)最近開始推動一套「不留痕」(do-not-track)機制,旨在防止網站蒐集未經使用者授權之個人資料。 FTC所出具的報告,旨在幫助政策制訂者和立法者形塑隱私規則,同時要求網站揭露更多其所蒐集之資料的相關事項,諸如蒐集的資料種類、如何使用該資料、以及保存期間。該報告並建議企業提供使用者更多拒絕被蒐集資料的退出選擇方案。 FTC主席Jon Leibowitz在最近的記者會中指出,目前有許多尚未受到網路隱私規範之行銷方式,普遍受到廣告商、社群網站或是搜尋引擎運用。FTC當局的建議由五人所組成的委員會無異議通過,由於網路廣告商、媒體經營者以及零售商所建立的新的行銷模式均建基於個人資料的使用上,因此此建議亦同時考量到該等業者之利益平衡,至2011年1月31日前持續蒐集業者之意見。Leibowitz表示,FTC希望確保新興成長的資訊市場是建立在促進隱私、透明、商業革新和消費者選擇的框架上,而這也是多數美國民眾所希望的。」 此一「不留痕」機制是參照FTC另外一套受歡迎的「勿來電」機制,也就是將電話號碼註冊在一特定的名單上,以防止電話推銷員來電,不過實際上的運作模式仍略有差異。相較於將姓名註冊在一份中央管控的名單,此一機制則是透過網頁瀏覽器的工具,傳送不願被追蹤或接受特定廣告的訊息,Google、Microsoft和 Mozilla都已測試過此套技術。 在此一報告提出後不久,麻州參議員John F. Kerry表明他將會推動一部隱私權相關法律,使FTC有更多規則制訂權以實現其報告所提建議。因為作為相關主管機關,FTC制訂規則的權利其實很有限。
美國國會通過《2022年保護美國智慧財產法》,加強營業秘密保護力道美國國會於2022年12月22日通過《2022年保護美國智慧財產法》(Protecting American Intellectual Property Act of 2022),經美國總統拜登(Joe Biden)於2023年1月5日簽署後正式生效。鑒於近年來美國營業秘密外洩事件頻傳,中國大陸和駭客透過各類方式竊取美國的智慧財產,對美國的經濟和國家安全產生重大危害。因此,共和黨參議員Ben Sasse與民主黨參議員Chris Van Hollen於2020年6月共同提出本法,並於2021年4月提出修正版本,期待美國政府進一步採取保護美國營業秘密的具體措施。 本法授權美國政府對涉及營業秘密重大竊盜的外國人及外國實體(foreign entity)實施制裁。重點包含: 1.要求美國總統每年應向國會提出報告,且第一份報告應於本法正式施行後6個月內提出,報告應列出符合以下條件之外國人、外國實體名稱及外國實體的執行長或董事會成員: (1)故意竊取美國營業秘密,且其行為很可能或已經對美國國家安全、外交、經濟、金融構成重大威脅者; (2)對上述故意竊取美國營業秘密之行為提供重要的財務、物質、技術、商品、服務等支援,或從中獲得利益者。 2.實施制裁 (1)針對外國實體,本法授權美國政府得實施的制裁手段有12項,包含根據國際緊急經濟權力法(International Emergency Economic Powers Act)凍結其資產、將該實體列入美國商務部的出口管制名單(Entity List)、禁止美國金融機構對該實體提供貸款、拒絕向該實體採購、禁止該實體的外匯交易、禁止美國人投資該實體的股票或債券、限制該實體成員入境、將該實體成員驅逐出境等。美國總統應針對名單中的對象實施至少5項制裁,並可對該外國實體之高層實施上述制裁。 (2)針對外國人,制裁手段包含凍結資產、拒絕入境、撤銷簽證等 3.豁免 總統若認為符合美國國家利益,得豁免對外國人及外國實體之制裁,但應於15天內向國會提交豁免的理由。 本法施行後,美國除了既有的《保護營業秘密法》(Defend Trade Secrets Act of 2016)外,將透過上述的制裁手段強化營業秘密的保護力道。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。