國際間科學專家利益衝突管理規範趨向-以美、歐藥品審查機構科學諮詢委員會專家利益衝突解決政策與機制為例

刊登期別
第23卷,第9期,2011年09月
 

本文為「經濟部產業技術司科技專案成果」

※ 國際間科學專家利益衝突管理規範趨向-以美、歐藥品審查機構科學諮詢委員會專家利益衝突解決政策與機制為例, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5634&no=0&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
泰國發布新法令規範數位平臺義務

泰國政府於2022年12月22日在政府公報上發布規範數位平臺義務的「數位平臺業務營運通知皇家法令」(the Royal Decree on Operation of Digital Platform Services Which Require Notification,以下簡稱皇家法令),鑒於數位平臺治理的不足與電子交易安全性,泰國政府發布皇家法令用以補充電子交易法(Electronic Transaction Act)之空缺。泰國政府要求數位平臺採取必要措施以符合皇家法令,將於2023年8月20日生效。 皇家法令將「數位平臺」定義為透過電腦網路連結商家、消費者與使用者從而產生電子交易的電子中介平臺。營收達到180萬泰銖的自然人、或營收達到5000萬泰銖的法人、或在泰國境內每月活躍用戶達到5000人的數位平臺需要負擔一定義務,包含向主管機關電子交易發展署(Electronic Transactions Development Agency, ETDA)通報其相關資訊、向ETDA提供年度報告、變更條款的透明度義務、以及境外數位平臺需指定代理人等。此外,數位平臺在提供服務或對數位平臺相關資訊進行修改時,有通知平臺用戶必要資訊的義務。 單一服務營收每年超過3億泰銖、或整體服務營收每年超過10億泰銖、或泰國每月活躍用戶超過總人口10%的數位平臺則為大型數位平臺,大型數位平臺相較於其他數位平臺需要負擔額外義務,除前述數位平臺義務之外,大型數位平臺需要實施風險評估、風險管理措施、系統安全措施與危機管理措施等額外義務。 自歐盟制定數位服務法(Digital Services Act)後,各國陸續建立數位平臺治理制度。經觀察,泰國政府是基於維護電子交易安全目的要求數位平臺負擔相關義務,與歐盟所關注的監督數位平臺與保護使用者基本權利似有所區別,規範對象門檻相比數位服務法來得低,義務也比數位服務法來得少。同時其他亞洲鄰近國家也開始關注數位平臺治理,如南韓、新加坡等也在研擬數位平臺治理法制,各國數位平臺治理法制之發展與走向值得持續觀察。

日本發布網路安全相關法令問答集

  日本國家網路安全中心(内閣サイバーセキュリティセンター,或稱National Information Security Center, NISC)於2020年3月2日發布「網路安全相關法令問答集」(サイバーセキュリティ関係法令Q&Aハンドブック),以回應日本內閣在2017年7月27日通過的「網路安全戰略」(サイバーセキュリティ戦略)中所提及應整理相關法制,以利企業實施網路安全措施與對策之決定。因此,內閣網路安全戰略本部(サイバーセキュリティ戦略本部)普及啟發‧人才培育專門調查會(普及啓発・人材育成専門調査会)於同年10月10日成立工作小組,針對網路安全相關法令進行推動與調查工作。   本問答集內容涉及13項法律議題,包括議題如下: 說明網路安全基本法(サイバーセキュリティ基本法)網路安全之定義與概要; 以公司法為核心,從經營體制觀點說明董事義務,例如建立內部控制機制,以確保系統審核與資料揭露之適當性; 以個人資料保護法為核心,例如說明個人資料的安全管理措施; 以公平交易法(不正競争防止法)為核心,說明在營業秘密的保護範圍內,利用提供特定資料與技術手段,來實施迴避行為係屬無效; 以勞動法規為核心,說明企業採取網路安全措施之組織與人為對策; 以資通訊網路、電信業者等為中心,說明IoT相關法律問題; 以契約關係為中心,說明電子簽章、資料交易、系統開發、雲端應用服務等議題; 網路安全相關證照制度,例如資訊處理安全確保支援人員; 說明其他網路安全議題,例如逆向工程、加密、訊息共享等; 說明發生網路安全相關事故之因應措施,例如數位鑑識; 說明當網路安全糾紛有涉民事訴訟時應注意之程序; 說明涉及網路安全之刑法規範; 描述日本企業在實施網路安全措施時,應注意之相關國際規範,例如歐盟一般資料保護規則(General Data Protection Regulation, GDPR)與資料在地化(Data Localization)等議題。   此外,隨著網路與現實空間的融合,各產業發展全球化,相關法規也日益增加,惟網路安全相關法規,在原無網路安全概念與相關法制的日本法上,卻鮮少有較為系統化的概括性彙編與解釋文件。因而盤點並釐清網路安全相關法令則成為首要任務,故研究小組著手進行調查研究,並將調查結果—「網路安全法律調查結果」(サイバーセキュリティ関係法令・ガイドライン調査結果)與「第四次關鍵基礎設施資訊安全措施行動計畫摘要表」(重要インフラの情報セキュリティ対策に係る第4次行動計画)作為本問答集之附錄文件以資參酌。最後,NISC期待透過本問答集,可作為企業實施具體網路安全對策之實務參考。

何謂防禦型聯盟(Defensive Patent Aggregator)?其是否為NPE的重要類型?

  防禦型專利聯盟係為NPE之一種重要類型,主要以抵制NPE侵擾為出發點,防禦型聯盟儘可能搶先攻擊型如NPE者去進行專利的授權或購買,加入防禦型聯盟者則可付出比與NPE進行和解所支付費用較少的金錢,成員其會員以取得不被NPE侵擾的地位。   NPE中屬於防禦型聯盟(Defensive Patent Aggregator)者,RPX(Rational Patent)之運作模式常可作為主要類型化參考對象之一。RPX為上市公司,其主要核心業務在於「緩和其會員被訴之可能」。RPX取得專利之資金主要來自會員年費,而各會員可取得RPX所有專利之「授權」,而收費結構不當然等於獲取專利之成本之分攤,以使會員已低於一般訴訟和解、或取得爭議專利等更為低的代價來防止被訴。在此同時,RPX本身也不會對他人起訴。   RPX所提供的防禦性聯盟策略,先行於其他NPE取得前那些潛在「危險性」的目標專利,甚至有可能向NPE取得專利,必要時,直接於訴訟仍在進行之時去取得專利。而在防禦以外,如其他非會員向會員起訴,會員也可以以RPX所有之專利進行反訴。   目前RPX會費在6萬5千美元至6900萬美元之間,依照會員本身營運規模之不同定之,但「會費等級」(rate card)會自加入之初鎖定不再更動,實際每年繳交費用則可能依據RPX所取得的所有專利價值增加而上昇 。而除此主要運作模式外,RPX也運用其廣泛取得專利之經驗,提供個別企業服務服務,得以較低的躉售價格取得專利(Syndicated Acquisitions),反之企業自行購買專利可能需要付出較高的「零售」價格   RPX的運作模式對於加入成為其「會員」者有兩項優勢:第一,減少「專利蟑螂」可取得的專利數量;其次,因可理解為全體會員合力進行防禦型專利取得故能減低這些專利取得之成本。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP