英國發佈具有決定性的基因體醫藥報告

  正當英國衛生部門(Department of Heath)計畫建構一個受命與提供資金的機構來進行癌症分子研究時,一個著重於基因藥物使用的英國政府諮詢組織-人類基因體策略團體(Human Genomics Strategy Group)提出報告要求英國健康照護服務(National Health Service, NHS)以多面向的方式來開發潛在性基因體科技。

  人類基因體策略團體所提供的報告建置出了英國就基因體藥物於臨床應用可行性的相關步驟,該等步驟可提昇英國臨床醫師決定疾病的風險與傾向、從事正確的診斷與預知,以及培養個人醫療的能力。除此之外,該報告亦開展了人類基因體於臨床與診斷照護上的創新應用,並且提供英國政府關於基因資料之處理、公共健康議題與教育等措施資訊,以用來支持基因體科技的應用。

  該報告建議,有鑑於英國已擁有強健的研究文化與資源,現階段英國已經準備好基因體藥物研究的初期階段。然而,在開始基因體藥物的研究之前,英國政府應該先在基因體技術廣泛使用於臨床照護與診斷的面向上作出更多的努力,其中包括建制出一套對於基因體與臨床基因檢驗的清楚標準,用以發展出一般性的程序來幫助健康照護專業人員來取得檢驗並分析結果。除此之外,為了防止前述一般性程序產生各項倫理道德性爭議,該報告亦建議英國政府應該發展出一套法制規範來處理關於基因藥物是否具有利用性的挑戰議題,並且以該規範來防範各種基因體資料可能被濫用的問題。

  而除了建置基因體計畫法制面的規範,為了讓基因體技術能更廣泛的應用於臨床照護與診斷的範疇,此報告亦建議英國NHS應該規劃採用基因體科技的計畫、發展中央基因體儲存網絡來處理大量由基因體藥物所產生的生物資訊,以及開展出針對基因體科技所發展的受命計畫和服務傳遞模型。同時,考量英國國民與健康照護人員對於促進基因體藥物亦有所幫助,該報告也建議英國NHS應該持續提供相關教育與訓練課程來提高前述人員對於基因體藥物的認知與其帶來的益處。

  有鑑於基因體醫藥報告對於英國未來從事基因實驗、臨床研究與基因藥物的研發具有決定性的影響,然該報告僅建構出具體的大方向,對於細節部分尚未有大量的著墨。因此,英國官方部門如何將此份報告於法制面和技術面加以具體落實,實值得繼續就相關內容作後續的追蹤。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 英國發佈具有決定性的基因體醫藥報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5638&no=65&tp=1 (最後瀏覽日:2025/09/19)
引註此篇文章
你可能還會想看
美國公布實施零信任架構相關資安實務指引

美國公布實施零信任架構相關資安實務指引 資訊工業策進會科技法律研究所 2022年09月10日   美國國家標準技術研究院(National Institute of Standards and Technology, NIST)所管轄的國家網路安全卓越中心(National Cybersecurity Center of Excellence, NCCoE),於2022年8月前公布「NIST SP 1800-35實施零信任架構相關資安實務指引」(NIST Cybersecurity Practice Guide SP 1800-35, Implementing a Zero Trust Architecture)系列文件初稿共四份[1] ,並公開徵求意見。 壹、發布背景   此系列指引文件主要係回應美國白宮於2021年5月12日發布「改善國家資安行政命令」(Executive Oder on Improving the Nation’s Cybersecurity) [2]當中,要求聯邦政府採用現代化網路安全措施(Modernizing Federal Government Cybersecurity),邁向零信任架構(advance toward Zero Trust Architecture)的安全防護機制,以強化美國網路安全。   有鑑於5G網路、雲端服務、行動設備等科技快速發展,生活型態因疫情推動遠距工作、遠距醫療等趨勢,透過各類連線設備隨時隨地近用企業系統或資源進行遠端作業,皆使得傳統的網路安全邊界逐漸模糊,難以進行邊界防護,導致駭客可透過身分權限存取之監控缺失,對企業進行攻擊行動。為此NIST早於2020年8月已公布「SP 800-207零信任架構」(Zero Trust Architecture, ZTA)標準文件[3] ,協助企業基於風險評估建立和維護近用權限,如請求者的身分和角色、請求近用資源的設備狀況和憑證,以及所近用資源之敏感性等,避免企業資源被不當近用。 貳、內容摘要   考量企業於實施ZTA可能面臨相關挑戰,包含ZTA部署需要整合多種不同技術和確認技術差距以構建完整的ZTA架構;擔心ZTA可能會對環境運行或終端客戶體驗產生負面影響;整個組織對ZTA 缺乏共識,無法衡量組織的ZTA成熟度,難確定哪種ZTA方法最適合業務,並制定實施計畫等,NCCoE與合作者共同提出解決方案,以「NIST SP 800-207零信任架構」中的概念與原則,於2022年8月9日前發布實施零信任架構之實務指引系列文件初稿共四份,包含: 一、NIST SP 1800-35A:執行摘要(初稿)(NIST SP 1800-35A: Executive Summary (Preliminary Draft))   主要針對資安技術長(chief information security and technology officers)等業務決策者所編寫,可使用該指引來瞭解企業於實施ZTA所可能遭遇挑戰與解決方案,實施ZTA所能帶來優點等。 二、NIST SP 1800-35B:方法、架構和安全特性(初稿)(NIST SP 1800-35B: Approach, Architecture, and Security Characteristics (Preliminary Draft))   主要針對關注如何識別、理解、評估和降低風險的專案經理和中層管理決策者所編寫,闡述風險分析、安全/隱私控制對應業務流程方法(mappings)的設計理念與評估內容。 三、NIST SP 1800-35C:如何操作指引(初稿)(NIST SP 1800-35C: How-To Guides (Preliminary Draft))   主要針對於現場部署安全工具的IT 專業人員所編寫,指導和說明特定資安產品的安裝、配置和整合,提供具體的技術實施細節,可全部或部分應用指引中所揭示的例示內容。 四、NIST SP 1800-35D:功能演示(初稿)(NIST SP 1800-35D: Functional Demonstrations (Preliminary Draft))   此份指引主要在闡述商業應用技術如何被整合與使用以建構ZTA架構,展示使用案例情境的實施結果。 參、評估分析   美國自總統發布行政命令,要求聯邦機構以導入ZTA為主要目標,並發布系列指引文件,透過常見的實施零信任架構案例說明,消除零信任設計的複雜性,協助組織運用商用技術來建立和實施可互操作、基於開放標準的零信任架構,未來可預見數位身分將成為安全新核心。   此外,NIST於2022年5月發布資安白皮書-規劃零信任架構:聯邦管理員指引[4] ,描繪NIST風險管理框架(Risk Management Framework, RMF)逐步融合零信任架構的過程,幫助聯邦系統管理員和操作員在設計和實施零信任架構時使用RMF。   我國企業若有與美國地區業務往來者,或欲降低遠端應用的安全風險者,宜參考以上標準文件與實務指引,以建立、推動和落實零信任架構,降低攻擊者在環境中橫向移動和提升權限的能力,與保護組織重要資源。 [1] Implementing a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://www.nccoe.nist.gov/projects/implementing-zero-trust-architecture (last visited Aug. 22, 2022). [2] Executive Order on Improving the Nation’s Cybersecurity, THE WHITE HOUSE, https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity (last visited Aug. 22, 2022). [3] SP 800-207- Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/publications/detail/sp/800-207/final (last visited Aug. 22, 2022). [4] NIST Releases Cybersecurity White Paper: Planning for a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/News/2022/planning-for-a-zero-trust-architecture-white-paper (last visited Aug. 22, 2022).

OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告

經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。

歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求

  歐洲資料保護監督官(European Data Protection Supervisor, EDPS)於2009年12月7日,針對歐盟執委會(European Commission)近年所提出關於設立歐盟「自由、安全及司法領域」(area of freedom, security and justice, AFSJ)大型資訊技術系統(IT System)作業管理機構之立法計畫,基於個人資料保護之立場提出正式法律意見。如此一立法計畫順利通過,該機構預計將擔負起包括「申根資訊系統」(Schengen Information System, SIS II)、「簽證資訊系統」(Visa Information System, VIS)、「歐洲指紋系統」(European Dactylographic System, Eurodac)及其他歐盟層級之大規模資訊技術系統之作業管理(operational management)任務。   根據EDPS首長Peter Hustinx表示,由於前述各項系統之資料庫中均包含諸如護照內容、簽證及指紋等大量敏感個人資料,因此儘管設立單一之作業管理機構,可以在相當程度上釐清歐盟各部門職責歸屬及準據法適用之問題,但如此一機構欲取得合法性,其活動範圍及相關責任即必須在立法中獲得明確界定,否則即可能產生個人資料濫用(misuse of personal data)及資料庫「功能潛變」(function creep)之風險。而基於此一分析,Hustinx認為目前執委會之機構立法計畫尚未符合個人資料保護要求。   此外,針對後續立法進程,EDPS建議除應確實釐清該管理機構之活動範圍是否包括整體AFSJ,亦或僅限於邊境檢查及難民與移民事務;執委會與該機構之關聯性與責任等重要問題外,是否可在缺乏相關經驗及實證評估下,即直接將所有歐盟層級之大型資訊技術系統與資料庫歸入該機構管轄,顯然亦有商榷餘地。EDPS就此認為,透過立法界定「大型資訊系統」之範圍,並且採取資料庫分次進入該管理機構責任範圍之方式,應係日後執委會可以努力之方向。

日本著作權法修正促進人工智慧開發

  2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。   日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。   本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。   惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。

TOP