英國發佈具有決定性的基因體醫藥報告

  正當英國衛生部門(Department of Heath)計畫建構一個受命與提供資金的機構來進行癌症分子研究時,一個著重於基因藥物使用的英國政府諮詢組織-人類基因體策略團體(Human Genomics Strategy Group)提出報告要求英國健康照護服務(National Health Service, NHS)以多面向的方式來開發潛在性基因體科技。

  人類基因體策略團體所提供的報告建置出了英國就基因體藥物於臨床應用可行性的相關步驟,該等步驟可提昇英國臨床醫師決定疾病的風險與傾向、從事正確的診斷與預知,以及培養個人醫療的能力。除此之外,該報告亦開展了人類基因體於臨床與診斷照護上的創新應用,並且提供英國政府關於基因資料之處理、公共健康議題與教育等措施資訊,以用來支持基因體科技的應用。

  該報告建議,有鑑於英國已擁有強健的研究文化與資源,現階段英國已經準備好基因體藥物研究的初期階段。然而,在開始基因體藥物的研究之前,英國政府應該先在基因體技術廣泛使用於臨床照護與診斷的面向上作出更多的努力,其中包括建制出一套對於基因體與臨床基因檢驗的清楚標準,用以發展出一般性的程序來幫助健康照護專業人員來取得檢驗並分析結果。除此之外,為了防止前述一般性程序產生各項倫理道德性爭議,該報告亦建議英國政府應該發展出一套法制規範來處理關於基因藥物是否具有利用性的挑戰議題,並且以該規範來防範各種基因體資料可能被濫用的問題。

  而除了建置基因體計畫法制面的規範,為了讓基因體技術能更廣泛的應用於臨床照護與診斷的範疇,此報告亦建議英國NHS應該規劃採用基因體科技的計畫、發展中央基因體儲存網絡來處理大量由基因體藥物所產生的生物資訊,以及開展出針對基因體科技所發展的受命計畫和服務傳遞模型。同時,考量英國國民與健康照護人員對於促進基因體藥物亦有所幫助,該報告也建議英國NHS應該持續提供相關教育與訓練課程來提高前述人員對於基因體藥物的認知與其帶來的益處。

  有鑑於基因體醫藥報告對於英國未來從事基因實驗、臨床研究與基因藥物的研發具有決定性的影響,然該報告僅建構出具體的大方向,對於細節部分尚未有大量的著墨。因此,英國官方部門如何將此份報告於法制面和技術面加以具體落實,實值得繼續就相關內容作後續的追蹤。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 英國發佈具有決定性的基因體醫藥報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5638&no=67&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
新冠疫情下日本的數位經濟實踐之路

新冠疫情下日本的數位經濟實踐之路 資訊工業策進會科技法律研究所 2021年3月9日   2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。 壹、主要問題   數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。   針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。   執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。 貳、具體案例   就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。   提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。 參、事件評析   有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。   經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。 參考連結 日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf [1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。 [2]同前註,頁15。 [3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。 [4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。 [5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。

地理空間資料(Geospatial Data)

  Google地圖、GPS導航、Facebook定位打卡、「台北等公車」、Uber叫車,「地理空間資料」(Geospatial Data)的運用已經滲透現代人的生活。然而,究竟什麼是「地理空間資料」?所謂「地理空間資料」,依美國的《2018年地理空間資料法》 (Geospatial Data Act of 2018)的定義:「與地球上緊扣相關的位置資訊,包含辨識地球上的地理位置和自然或結構特徵與疆界。在向量資料組(Vector Dataset)中,大致以點、線、多邊形或複雜的地理特徵或現象呈現。該資料可能透過遙測(Remote Sensing)、製圖(Mapping)和量測(Surveying)科技取得。」   地理空間資料涉及地理學、地圖學(Cartography)、地理資訊系統學(Geographical Information Science, GIScience)及許多相關的科學領域。互動式的時間與空間功能,成就了當今混和空間與時間的資訊爆炸,更是五花八門運用地理資訊的手機應用程式之基礎等。應用場景涉及政府、商業、社會各層面,順利達成多元且重要的任務,例如:疾病通報、環境監測和公共安全。2017年Google於委託AlphaBeta的分析報告指出:「全球地理空間資料相關服務每年有四千億美元的產值、節省消費者超過五千五百億美元的燃料和時間成本、直接創造四百萬份工作機會。透過電子地圖服務,如:提高顧客流量的免費行銷工具Google My Business,更促使小型商家產生1.2兆美金的營業額。」

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

美國國安局網站違法使用長期性“Cookies”

  雖然美國政府明文規定禁止聯邦政府機關使用長期性“Cookies”,但國家安全局(The National Security Agency, NSA)近日卻被發現將永久性“Cookies”放置於造訪該網站民眾之電腦之情形,且保存期限長達30年(直到2035年)。   所謂“Cookies”,指於使用者端紀錄該用戶造訪某一網站的過程與從事之活動,以使得下次進行相同網路瀏覽更為容易之工具。例如,透過Cookies紀錄的功能,使用者就可以將帳號與密碼記載於電腦中,再次造訪時即不用再次輸入帳號密碼以提供認證。   根據預算管理(Office of Management and Budget, OMB)於2000年公布之備忘錄Memorandum for the Heads of Executive Departments and Agencies(M-00-13)指出,聯邦政府機關除在於「必要需求」(Compelling need)下,不得使用長期性的“Cookies”。所有留在造訪民眾端的“Cookies”,必需隨著用戶關閉視窗而被消除。   NSA發言人Don Weber表示,NSA網站過去所使用的“Cookies”都是會隨者造訪者關閉網頁即刪除的暫時性“Cookies”,而這次之所以會產生長期性的“Cookies”留存在造訪者端,完全是因為NSA電腦系統更新不小心產生的,並非刻意用來作為監視使用者之工具。但民間團體則表示,這顯示了聯邦政府機關缺乏對於隱私權規範之認知,違反了國家最基本的隱私保護規範還不自知。   目前NSA已修正該程式,並清除了這些長期性的“Cookies”。

TOP