美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國2016年製造創新策略方案依2014年復甦美國製造與創新法(RAMI Act of 2014),美國國家製造創新網絡計畫於2016年2月公布策略方案(Strategic Plan)。國家製造創新網絡有四大目標:以「提升製造競爭力」為終極目標,其他三個目標分別為「促進技術轉型」、「加速製造業人力發展」、以及「確保穩定與永續之基礎建設」。在「促進技術轉型」方面,旨在促進創新技術朝向具備可適性、擁有成本效益、以及高效能之國內製造業量能的方向轉型。由於不同的製造整備度(manufacturing readiness levels)對應不同的技術整備度(technology readiness levels),且國家製造創新網絡有其設定之目標範圍,因而研發機構被預期能夠促進技術轉型的亦有差異。 行政院於民國105年7月核定通過「智慧機械產業推動方案」,透過「智機產業化」與「產業智機化」來建構智慧機械產業生態體系。智慧機械將結合半導體先進製程、精密醫療機械加工與智慧服務型機器人、以及航太與造船軍民通用技術應用,分別對應帶動亞洲矽谷、生技醫藥、以及國防等創新產業政策。透過智慧機械帶動整體產業發展,從精密走向智慧、從單機走向系統,以提高整體產業之產值
CODEX增訂低量摻雜重組DNA植物成分之食品安全評估準則經過兩年的研議溝通,由國際食品標準委員會(Codex Alimentarius Commission,CODEX)生技衍生食品小組(Task Force on Foods Derived from Biotechnology,TFFBT)所研擬的「重組DNA植物成分低量摻雜之重組DNA植物來源食品安全評估準則之附件草案」(Draft Annex to the Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants on Low-Level Presence of Recombinant-DNA Plant Material,LLP草案),終於日前送交CODEX大會決議通過。 關於植物來源食品內基改物質低量呈現(Low-Level Presence)的問題之所以受到國際間高度關切,其背景因素,其實是來自於全球各地域對於基因改造食品之食品安全審查進度狀態不一之情況使然。以最明顯的美國和歐盟為例,因為,對於植物來源食品而言,其所使用的植物原料,例如穀物、豆類、油菜種子等,在種植、運送至成品途中,尤其是在採收過程中,無可避免地均有可能會混雜到某些鄰近的合法基改植物原料;而目前國際現況是,許多在美國已通過食品安全評估之基改食品植物原料,在歐盟卻遲未獲得許可,而那些意外混雜了在美國為合法基改植物原料的食品,出口至尚未核准那些經混雜基改原料食品之國家時,則會因此被拒絕進口,而形成貿易上阻礙。 針對此問題,自2006年起,TFFBT特別召集成立一個工作小組,由美國出任小組主席,並與德國及泰國擔任共同主席,負責研擬LLP草案,以提供一套較簡易評估程序,專門針對這些混雜了低量的在出口國家已經合法、但在進口國家尚未通過食品安全檢驗之重組DNA植物成分食品之情形,提俱一套安全評估方法供進口國家政府參考,藉此,一方面確保這些摻雜低量重組DNA食品之安全性,另方面也不致令進口者因其產品含有低度摻雜而銷耗掉太過的貿易利益。 LLP草案對於摻雜低量重組DNA成份之進口國家而言,其較重要具實質意義的部份,係在於資料庫之建立、共享資訊之快速使用(rapid access)等機制的導入。研議期間,工作小組即表示會與相關國際組織聯繫,搭配建立適當之資訊資料庫。而負責籌設該資料庫的國際糧農組織(FAO)則表示,其除將運用其已建立的「國際食品安全及動植物健康入口網」(International Portal on Food Safety, Animal and Plant Health,IPFSAPH)外,並計劃與經濟合作發展組織(OECD)進行合作,引用「OECD生物追蹤產品資料庫」(OECD BioTrack Database)內依CODEX「重組DNA植物來源食品安全評估準則」(Guideline for the Conduct of Foods Safety Assessment of Foods Derived from Recombinant-DNA Plants (CODEX Plant Guideline),CODEX植物準則)所蒐羅之資訊,彙集各類相關資訊為一整合網站,並開放給公眾使用。
何謂「無人機」?無人機(Drone)也就是無人飛機或無人飛行器(Unmanned Aerial Vehicles, UAV),具備自動飛行系統的簡易模型飛機,自動飛行系統內可能包含一電腦作業系統、一套衛星導航裝置、羅盤功能、氣壓高度計、偵測器及設計飛行之軟體等等,簡稱無人機。茲因電子與無線傳輸科技進步,無人機在國際間掀起流行,近來無人機之使用引發安全疑慮,促進各國重視無人機的使用與法制管理。目前國際間陸續針對無人機立法管理的有美國、日本及歐盟等,我國行政院亦於2015年9月24日通過「民用航空法」部分條文修正草案因應無人機遙控管理規範。觀諸國際立法及修法趨勢,無人航空器之管理,包括無人機的體積、重量、使用用途、使用區域限制、使用時間限制、飛行速度或方法、飛行高度限制等,且亦須重視安全、隱私、資料保護、損害責任與保險相關問題,以及無人機所有權明確判別之方式等,因此我國未來就無人機相關管理規範或可參考先進國家重要管理規定,擬定更適合我國之「無人航空器管理規則」,俾利發展新興科技無人機市場時,同時能兼顧確保個人、國家與領空安全之規劃。