世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
美國司法部與聯邦貿易委員會聯合發布新「垂直合併指引」美國司法部 (Department of Justice, DOJ)與聯邦貿易委員會(The Federal Trade Commission, FTC)於2020年6月30日發布新的「垂直合併指引(Vertical Merger Guidelines)」,其為美國司法部與聯邦貿易委員會首次針對垂直合併所發布之共同指引,且為自司法部1984年「非水平合併指引(Non-Horizontal Merger Guidelines)」頒布以來,首次針對垂直合併之重大修正,內容旨在概述聯邦反托拉斯主管機關如何評估垂直合併之競爭效應、以及該等合併是否符合美國反托拉斯法。 本指引所適用之合併態樣包括嚴格垂直合併(於相同供應鏈之不同階段的公司或資產之合併)、斜向合併(diagonal mergers)(於競爭供應鏈之間之不同階段的公司或資產之合併)、以及於互補合併(mergers of complements)時所會產生之垂直議題。其描述主管機關用於判斷垂直合併之反競爭與促進競爭效果之分析架構。 於反競爭效果分析之單方效果方面,其提出可能之類型包括封鎖與提高競爭對手成本(Foreclosure and Raising Rivals’ Costs)、影響競爭之敏感資訊的近用(Access to Competitively Sensitive Information);於反競爭效果分析之共同效果方面,其指出垂直合併可能會透過鼓勵合併後相關市場中各公司間之協調互動(coordinated interaction)來減少競爭並傷害消費者。 於促進競爭效果分析方面,其著重於針對消除雙重邊際化(elimination of double marginalization, EDM)之分析,因垂直合併通常透過EDM使消費者受益,而傾向於可減少對競爭造成損害之風險。主管機關可以獨立依一切可得之證據來量化EDM之效果,其通常會檢驗被併購後可自給自足之效果,相較於若未被併購時需從獨立供應商購買之情況下所可能節省之成本,作為對於EDM效果之驗證。 藉由此指引之發布,可為主管機關對於垂直合併之評估與分析方式提供了透明度,而有助於為企業界、律師界、與執法者提供更多之可預測性。
簡析歐盟「能源效率指令」-- 以建築能源效率為核心 歐盟執委會提出《歐洲晶片法案》應對半導體短缺並加強歐洲技術領先地位歐盟執委會於2022年2月8日提出《歐洲晶片法案》(European Chips Act),以確保歐盟在半導體技術和應用的供應鏈安全、彈性和技術領先地位。近來全球半導體短缺,迫使汽車及醫療保健設備等眾多領域工廠關閉,部分歐盟成員國的汽車產量於2021年下降三分之一,顯示在複雜的全球地緣政治背景下,半導體價值鏈極度依賴數量有限的參與者。《歐洲晶片法案》將動員公共及私人投資歐洲半導體產業,金額超過430億歐元;並制定政策措施以預防、準備、預測和迅速應對未來任何供應鏈中斷情形,幫助歐盟實現2030年將現行晶片市場占比提升至20%的願景。《歐洲晶片法案》共分成八大章節,涵蓋歐洲晶片倡議、供應安全、監測和危機應對、治理模式、保密處罰及程序等議題。其中《歐洲晶片法案》主要由三大支柱組成,規範內容如下: 支柱一:歐洲晶片倡議(法案第3條至第9條)。歐洲晶片倡議將對現有關鍵數位技術重新進行戰略定位,以強化歐盟成員國和相關第三國及私營部門的「晶片聯合資源承諾」。歐盟預計將投入110億歐元用於加強研究、開發和創新,以確保部署先進半導體工具、原型設計實驗產線、測試和用於創新生活應用的新設備,培訓員工深入了解半導體生態系統和價值鏈。 支柱二:供應安全(法案第10條至第14條)。建立半導體「集成生產設施(Integrated Production Facility, IPF)」和「開放歐盟代工廠(Open EU Foundry, OEF)」,透過吸引投資與提高生產能力來建立供應安全的新框架,用以發展先進節點創新及節能晶片。此外,晶片基金將為新創企業提供融資管道,協助技術成熟並吸引投資者;投資歐洲基金(Invest EU)將設置專屬半導體股權投資的選項,以擴大歐洲半導體研發規模。 支柱三:監測和危機應對(法案第15條至第22條)。建立歐盟成員國和執委會間的協調機制,用以監測半導體供應、估計需求和預測短缺。透過蒐集企業的關鍵情報能發現歐洲主要弱點和瓶頸,從而監控半導體價值鏈穩定。歐盟將彙整危機評估報告並協調各成員國採取歐盟建議的應對方案,以便共同做出迅速正確的決定。