近年日本中小企業與大型企業合作研發、進行交易合作的商業型態日益增加,故日本中小企業廳自2017年1月至2020年3月為止(約三年間),針對日本的中小企業進行了訪談,調查了中小企業與大型企業間約12,000筆合作研發等商業行為,從中發現了許多問題,如大型企業常藉由合作研發,參觀中小企業工廠的名義,實際上是竊取中小企業技術、know how;其他還有以共同研發為名,擅自將研發成果使用在其他領域的案例等。 由於中小企業常在商業合作上處與弱勢,故日本政府為促使中小企業與大型企業的合作能符合公平交易原則、以及保護中小企業的智慧財產、技術,防止中小企業的智慧財產、技術、Know how等無形資產被商業合作夥伴(大型企業)不當使用或以非法的方式取得、使用,故日本政府計劃於今年秋天發布「中小企業智慧財產、技術保護指針」。 為改善中小企業與大型企業合作時,可能遭遇的智財、技術歸屬等問題,除透過「中小企業智慧財產、技術保護指針」提供具體的對策與措施,日本中小企業廳將於2021年編列相關預算,以智慧財產權的角度協助中小企業解決智財相關問題,並強化中小企業保護智慧財產權之意識,另外還會提供中小企業智財諮詢等相關支援。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國聯邦通訊管理委員會對LPTV的新管制措施為了確保農村地區低功率電視(LPTV)播送的服務,與協助該等地區傳輸數位訊號,美國聯邦通訊委員會(FCC)決議從2009年8月25日起,不再接受新的類比傳輸運用與設備建置之申請,只允許新的數位低功率電視(new digital-only LPTV)及其有關之電視訊號轉換站的設置申請。此申請機會將限於特定區域,以及採行「先申請先服務」(first-come, first-served)的處理程序。此外,針對全國性的核發執照申請,則於2010年1月25日開始受理。 低功率電視起源於1982年,係FCC為了地方導向、實踐表意自由權利與促進文化多樣性,而在小型社區允許低功率電視執照擁有者得享有「次級性頻譜使用權」(secondary spectrum priority),於VHF(2-13)或UHF(14-51)頻段中,提供電視節目播送之服務。 根據2005年聯邦赤字削減法(Federal Deficit Reduction Act of 2005)規定,美國已於2009年6月12日全面停播類比訊號節目,改以數位訊號播送,但該法並未規範低功率電視台播送訊號的數位化時程,故有關既有低功率電視相關之管制亦須一併修訂,方能達到全數位化的視聽環境目標。
為打擊境外逃漏稅,國際間持續擴大稅務資訊自動交換經濟合作暨發展組織(簡稱經合組織、Organization for Economic Cooperation and Development,下稱 OECD)於今年6月30日表示「2019年已有近百個國家/地區進行了稅務資訊自動交換,使其稅務機關可以獲得其居民在海外所持有的8,400萬個金融帳戶的數據,涵蓋的總資產達10兆歐元。相較於2018年(交換了4,700萬個金融帳戶資訊,約5兆歐元)有了顯著增長。」且「共同申報準則(亦稱共同申報及盡職審查準則、Common Reporting Standard, 下稱CRS)要求各國和各司法管轄區每年自動交換其金融機構提供的非居民的金融帳戶資訊,以減少境外逃漏稅的可能性。許多發展中國家已加盟其中,預計未來幾年會有更多國家加入。」 OECD秘書長Angel Gurría亦表示「由OECD創建並由全球論壇管理的這種多邊交換制度,此刻正為世界各國(含發展中國家)提供大量的新資訊,使各國稅務管理部門能夠確保境外帳戶被正確申報。尤在目前COVID-19危機中,各國正籌集急需的收入,一個無處藏富的世界,此點遂至關重要。 事實上,我國財政部於2017年11月16日所發布(民國109年4月28日修正)之「金融機構執行共同申報及盡職審查作業辦法」(簡稱CRS作業辦法),正是為了使我國接軌OECD發布及主導的CRS,藉由提高金融帳戶資訊透明度,據此與其他國家/地區進行金融帳戶資訊自動交換,以利我國與各國稅捐機關能正確且完整地掌握其境外納稅義務人的金融帳戶資訊。值得注意的是,我國第一波稅務資訊自動交換將於本年度9月份與我國32個稅捐協定國進行。