美國推動L Prize獎勵創新節能照明產品技術研發

  美國能源部依據「2007年能源獨立與安全法案」(The Energy Independence and Security Act (EISA) of 2007)第655條規定,設立Bright Tomorrow Lighting Prize (L Prize)競賽,這是第一個由美國政府所發起的科技競賽。此一規定係依據「2005年能源政策法」(Energy Policy Act of 2005)第1008條而來,賦予能源部對於與其政策目的相關、有重大貢獻的科技研發或商業應用,得設置競賽活動並提供獎金。因此,為了促進照明產業的發展,而固態照明(solid-state lighting)科技是具有潛力能減少照明能源的使用以達解決氣候變遷的方式之一,因此能源部希望在固態照明技術的研發上扮演催化者的角色,藉由此一競賽來刺激研發超效能固態照明產品以取代傳統照明設備。

  此一規定對工業的發展造成挑戰,因為將會取代兩種日常生活所使用的產品:60W白熾燈泡與PAR 38滷素燈泡。於2008年5月首先展開的是60W白熾燈泡領域,因為此種燈泡是消費者最普遍使用的,約佔美國國內白熾燈泡市場的一半。要獲得此獎項的要求,必須該替代產品要能使用低於10W的電力,節省83%的能源。該競賽已於2011年8月結束,由Philips Lighting North America所研發的高效能LED產品獲得,除頒發一千萬美元的獎金外,亦已與聯邦政府簽署採購合約。該產品預計於2012年春於零售商店上架。

  L Prize的第二階段競賽於2012年3月展開,希望針對PAR 38滷素燈泡領域,鼓勵企業研發LED替代產品,來取代通常使用於零售商店或戶外安全照明的聚光燈和探照燈等傳統PAR 38滷素燈泡。此一競賽獎勵對於全美的照明產業是相當好的挑戰,不僅能研發出創新、具有高效能的產品,亦能提升美國製造業的競爭力。目前全美國約有九千萬個PAR 38滷素燈泡,若能以高效能燈泡取代,能源部預估每年可以節省約11terawatt-hours的電力,並可減少七百萬噸的碳排放。

  要贏得L Prize的產品必須通過嚴格的測試,包括其性能、品質、壽命、價格及是否適合量產等。由於在PAR 38滷素燈泡領域,至少必須製造50%的LED燈泡,且所有的組裝都須在美國完成,因此同時亦提供相當多的工作機會。

相關連結
相關附件
※ 美國推動L Prize獎勵創新節能照明產品技術研發, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5733&no=67&tp=1 (最後瀏覽日:2025/11/27)
引註此篇文章
你可能還會想看
歐盟執委會通過下世代接取網路管制建議

  歐盟在今年5月19日公布的數位議程(Digital Agenda)中,設定了多項寬頻建設目標,包括所有歐洲民眾於2013年均能擁有基本寬頻, 2020年擁有30Mbps以上的高速寬頻,與50%以上的歐盟家戶擁有100Mbps以上的超高速寬頻。為達成此項目標,歐盟執委會於今年9月20日提出了採納下世代網路管制建議(Commission Recommendation on regulated access to Next Generation Access Networks(NGA))、提出未來五年的無線電頻譜政策計畫,與鼓勵公、私部門進行寬頻網路投資等三項主要推動措施。    在NGA管制建議正式公布前,執委會曾於2008年與2009年兩度就建議草案進行公開資詢。執委會認為,此一建議除了可提升管制明確性,避免管制假期(regulatory holidays)外,並在鼓勵投資與維護競爭間取得適當平衡,其重要管制原則如下:   1. 管制者對於獨占業者之光纖網路接取進行成本訂價管制時,應藉由風險溢價(risk premium)充分反應投資風險,使投資者能獲取具吸引力之利潤。   2. 管制者應採取適當的接取管制措施,促使新進業者進入市場,使其可依投資階梯(ladder of investment)逐步建置其自有網路,促進基礎設施競爭。   3. 管制者所採取之事前管制措施,應反映個別市場與城鄉區域之市場競爭差異。   4. 管制建議強烈支持NGA網路的共同投資,並對長期或大量的光纖迴路接取合約,允許在一定條件下給予價格折扣。

因應綠色採購 環保標章實驗室認證問題有待解決

  近年來,國際企業強調「綠色商機」,綠色競爭力更成為台灣企業進軍國際市場的指標之一。政府配合綠色風潮,鼓勵國內綠色生產及綠色消費,在政府採購法增列綠色採購條款,並通過「機關優先採購環境保護產品辦法」。然而這些美意,卻可能因為環保標章實驗室認證問題,大打折扣。   造成上述結果的主要原因是,我國因相關環保法令不周全,環保管理、監督單位權責不一,形成三不管局面,影響廠商競爭力。舉例而言,現在環保署嚴格把關環保標章實驗室,檢查近 20 家實驗室,最後只認定三家有合格檢測能力,廠商要取得環保標章,一定要找這三家業者,形成供需嚴重失衡局面,廠商耗時、浪費金錢,還是拿不到環保標章。   另外,環保標章實驗室的管理單位,應該是環保署還是經濟部標準檢驗局;發生爭議事件,環保署和標準局各有說詞。環保標章是環保署核發,但實驗室檢測、管理則由標檢局負責,故而出現三不管的局面。   今年 7 月 1 日 ,歐盟全面執行 RoHS (無鉛製程)環保措施,明年,歐盟開始執行 WEEE (廢棄電機電子產品回收)環保措施,由於台灣資訊大廠 98% 為出口導向,這兩個規定使我國資訊廠商不得不審慎因應之,然而, RoHS 及 WEEE 僅是一個開端,未來歐盟一旦通過 REACH 規則,因環保要求而受影響的產業將更多,可見環保標章實驗室認證問題,必須嚴格看待並儘速解決。

英國倫理機構針對海量資料(big data)之使用展開公眾諮詢調查

  納菲爾德生物倫理學理事會(Nuffield Council on Bioethics)成立於1991年,是一家英國的獨立慈善機構,致力於考察在生物與醫學領域新近研究發展中所可能牽涉的各項倫理議題。由該理事會所發表的報告極具影響力,往往成為官方在政策決策時之依據。   有鑑於近年big data與個人生物和健康資料的分析使用,在生物醫學研究中引起廣泛的爭議討論,此間雖然不乏學者論理著述,但對社會層面的實質影響卻較少實證調查研究。Nuffield Council on Bioethics於日前發布一項為期三個月(2013/10/17~2014/01/10)的生物暨健康資料之連結使用公眾諮詢調查計畫(The linking and use of biological and health data – Open consultation)。此項計畫之目的在於,瞭解更多有關資料連結與使用時所可能導致之傷害或可能的有利發展。並研析適當的治理模式和法律措施,使得民眾隱私權保護與相關研究之合法性得以兼顧,俾使更多人受益。   為執行此項計畫,Nuffield Council on Bioethics延攬健康照護資訊技術、資訊治理、健康研究、臨床診療、倫理和法律等領域專家組成計畫工作小組,由工作小組廣泛地蒐集來自民眾與各類型組織的觀點,探詢當民眾在面對個人的生物與健康資訊相互連結、分析時,民眾對當中所牽涉倫理議題之看法。該項公眾諮詢調查將針對以下重點進行: 1.生物醫學資料之特殊意義 2.新的隱私權議題 3.資料科學和資訊技術發展所造成之影響 4.在研究中使用已連結的生物醫學資料所可能帶來的影響 5.在醫學臨床上使用已連結的資料所可能帶來的影響 6.使用生物醫學研究和健康照護以外的生物醫學資料所可能帶來的影響 7.探討能夠在倫理上支持連結生物醫學資料的法律和治理機制   由於Nuffield Council on Bioethics被視為英國科學界的倫理監察員、政府智囊團,因此未來調查報告發布後對相關政府政策所可能產生的影響,當值得我們持續關注。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP