加拿大上訴法院判決”iPod tax”違法

      加拿大上訴法院判決MP3播放器不在空白錄印媒體複製著作權物課稅的範疇,本案仍有上訴最高法院之可能。


  根據本案審判法官Mr. Justice Marc Noel之見解,其認為雖然加拿大著作權法允許加拿大著作權委員會(Copyright Board of Canada)對空白可複製媒體(Blank Media)課稅,然法條中並未允許其可課徵MP3播放器製造商類似的費用。


  
Noel法官坦承其亦認知到,著作權委員會是本著希望補償著作權人因為點對點網路下載而致生損害的立場,惟重點在於「主管機關仍應依法行政。」就此而論,對 MP3播放器交易加以課稅仍非合法。


  
200312月加拿大開始針對可複製媒體課稅,而著作權委員會進而主張,MP3播放器製造業者每賣一部少於1GB容量的播放器應被課以2美元、110GB容量者課以15美元,以及超過10GB容量之播放器課以25美元,以補償著作權人因為點對點網路複製音樂所生的損失。


  根據加拿大著作權法,著作權委員會可針對空白重製媒體進行課稅以補償著作權人因為個人目的重製
(Private Copying)所生之損失,2000年開始針對可複製CD媒體課稅,包括空白影音帶。


  播放器業者想當然並不接受這項義務的課予,因此起訴,而
本案判決的結果可預見將造成MP3播放器業者的降價行為。同時,一些將課稅所得分配與著作權人(包括演奏家或唱片公司)的機構,如加拿大個人重製組織(Canadian Private Copying Collective),已在評估是否將上訴至最高法院。不過至少,他們有可能將遊說加拿大政府以修正著作權法之方式,將MP3播放器的情形納入,以及若有可能,將未來類似性質之商品一併納入考量。

相關連結
※ 加拿大上訴法院判決”iPod tax”違法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=575&no=67&tp=1 (最後瀏覽日:2025/12/26)
引註此篇文章
你可能還會想看
雲端運算所涉法律議題

  雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。   雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。   雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。

法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)

法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。

世界智慧財產權組織發表2020年全球創新指數報告

  世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年9月2日發表「2020年全球創新指數報告」(Global Innovation Index 2020, GII 2020),報告中比較131個經濟體之最新全球創新趨勢。GII為一年一度發行之報告,除了比較不同經濟體的創新指數外,每年會挑選不同創新議題進行深度研究,2020年研究主題為「誰投資創新?」(WHO WILL FINANCE INNOVATION?)。   GII的報告評比,區分為七大指標分別為:組織機構(Institutions)、研發與人力資源(Human capital and research)、基礎建設(Infrastructure)、市場成熟度(Market Sophistication)、企業成熟度(Business sophistication)、知識技術產出(Knowledge and technology outputs)以及創意產出(Creative outputs)。其下再區分為21個次標和80個小標例如政府效能(Government effectiveness)、法規範環境建構(Regulatory environment)、教育支出占GDP比例、外國學生比例、R&D支出占GDP比例、生態永續度、高科技出口、資通訊服務出口等。2020年評比全球創新指數最高的10個國家排名分別為:瑞士、瑞典、美國、英國、荷蘭、丹麥、芬蘭、新加坡、德國和南韓,均為高所得國家;這也是南韓第一次躋身進入前10名。   另外報告中亦說明,2020年COVID-19大流行引發前所未有的經濟停滯。在COVID-19爆發之前,研發支出成長明顯快於全球GDP成長,創業投資(Venture capital)和IP應用達到高峰,但疫情發生的現階段全球經濟成長大幅度下降。然而經濟成長停滯之下,突破性技術創新的潛力仍在繼續存在,例如許多仍保有現金流的大型ICT企業仍持續推動數位創新,製藥技術與生物科技產業的研發支出大量增加,健康產業研發也受到重點關注。此外,COVID-19危機亦會促進傳統產業(例如旅遊、教育和零售等)之創新,以及改變企業在本地或全球之生產工作組織方式。而在各國政府為忙於制定緊急救濟計畫(emergency relief packages),以緩解地域封鎖所造成的負面影響和經濟衰退的同時,這些緊急救濟計畫對新創公司之融資多半不夠明確,到目前為止,各國政府並沒有創新研發作為當前刺激經濟計畫中的優先事項(priority)。   報告中針對「誰投資創新?」之主題,統計數據顯示創新金融(Innovation finance)雖然受疫情影響有所下降,但金融體系尚屬健全。惟資助新創企業的資金正在枯竭(drying up),北美、亞洲和歐洲地區的創業投資交易也急劇下降,幾乎看不到首次公開發行(IPO)。即使是倖存下來的新創公司,其盈利能力和對創投者(Venture Capitalist)的吸引力也在下降。也因為疫情影響,創投者減少對創新、小型和多元化的新創事業提供資金,取而代之關注所謂的「大型交易」(mega-deals),也就是資助大型企業的發展,並將投資領域轉向健康、線上教育(online education)、大數據、電子商務和機器人科技。此外,報告中亦說明近期創投多半集中在可以短期得到報酬的創新事業,例如資通訊軟體及服務、消費性產品服務、金融商品等,取得創投機構大量資金。相較之下,若研發較為複雜的前瞻科學技術,反而取得之資金較少;同時COVID-19惡化此現象,使研發期較長之產業和企業面臨更嚴峻的財務限制。

美國政府課責署重視NPE濫訴現象,並提出「patent monetization entities」概念

  近年專利蟑螂(Paten Troll)、非專利實施實體(Non-Practicing Entity, NPE)的興起,使得國際上智慧財產權的運用出現巨幅變化。美國政府、企業及學界皆認為專利蟑螂濫訴現象為亟待解決之課題,而相繼投入研究,並於近日陸續發表重要之研究報告。   繼今年(2012)8月,美國國會研究處 (Congressional Research Service)提出對抗專利蟑螂之研究報告後(“An Overview of the "Patent Trolls" Debate”)。隸屬國會的政府課責署(Government Accountability Office, GAO, 另譯審計總署)所資助的研究團隊,亦於杜克大學科技與法律評論(Duke Law & Technology Review)發表相關研究。研究團隊採取實證的研究方法,於2007年~2011年間,每年度隨機抽樣100家涉及專利訴訟的公司,總計抽樣500家公司。依據該項研究結果,去年(2011)由NPE所提起的專利訴訟,佔研究樣本的40%,相較於5年前的數據,成長幅度高達2倍。本項研究可歸納以下兩項要點:   1.專利訴訟主體的變化   由NPE為原告所提起的專利訴訟數量呈現極速成長;由企業為原告者則逐年下降;同為非專利實施實體之大學,其作為原告所提起之訴訟則未達1%。   2.訴訟並未進行實質審理   由NPE提起之訴訟,其目的在於獲取和解金或授權金,故絕大多數係申請作成即時判決(summary judgement),即當事人一致認為對重要事實不存在爭議,而向法官申請不為事實審理,僅就法律問題進行裁決。   就此,該研究團隊認為,NPE已成為專利制度,甚至係整體經濟之一環,故提出應以「patent monetization entities」取代過往NPE的稱呼,強調此類公司以專利授權或專利訴訟作為公司營利之來源,如此將更為貼切。

TOP