英國Ofcom公佈電視廣告交易機制的反競爭調查報告

  英國Ofcom在2011年12月15日公佈了有關電視廣告交易機制是否有限制或扭曲市場競爭、最終傷害消費者的反競爭調查報告。最後認定並無明確證據顯示英國當前的電視廣告交易機制妨礙競爭,因此決定不依「2002年企業法」(Enterprise Act 2002)所賦予之權限,移送競爭委員會(Competition Commission)進一步調查。

  雖然英國的電視廣告市場一年仍有40億英鎊的產值,但廣電業者的收益實已長期且穩定減少中,故Ofcom同年6月啟動本諮詢與調查,並從以下三個角度檢視電視廣告市場是否存在流弊,而使廣告價格高漲、廣告獲利配置不效率、阻礙廣電業者之創新與不利閱聽眾之經驗:
1、價格不透明:電視廣告市場長期以來因聯合報價、股權交易或各類折扣,導致價格不透明,使廣告買主可能無法進行有意義的比價。但Ofcom認為廣告公司皆屬老練業者,熟悉交易內容與約款;而廣告主則可透過閱聽眾的行為反應判斷廣告成效,且證據亦顯示廣告主經常替換廣告公司以獲得更好的交易條件。
2、 捆綁銷售時段:廣電業者可能運用市場力搭售離峰時段(off-peak airtime)。但證據顯示廣告買主尚可分別購買時段;而英國每月有250萬個廣告開口,強制分別交易將造成交易成本顯著上升。
3、交易模式僵化:雖然英國的電視廣告交易模式已20年不變,但科技進步使頻道數目大增,連帶使閱聽眾分化與廣告開口爆增,證據顯示廣告部門對此適應良好。

最後Ofcom認為在有害競爭證據不明顯,且進一步調查會產生更多成本的情況下,決定仍維持商業機制,不介入管制電視廣告市場。

 

相關附件
※ 英國Ofcom公佈電視廣告交易機制的反競爭調查報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5758&no=67&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
何謂「日本A-STEP計畫」?

  日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。   研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。

OFCOM將重新檢討商業廣播電視節目贊助規定

  英國廣播電視主管機關OFCOM於今年十月下旬公布,其將修酌廣播電視規則(Broadcasting Code),放寬商業廣播電視節目/頻道贊助規定。   現行的廣播電視規則禁止特定類型的節目接受贊助,例如新聞和時事節目不得接受贊助,也禁止特定種類之商品或服務廠商贊助特定節目,例如禁止酒商贊助兒童節目。   OFCOM表示將修酌現行規定,放寬節目/頻道贊助之規定,惟在兼顧節目編輯權以及兒童閱聽人之收視權益的考量下,將訂定相關的節目/頻道贊助限制,包括     1.必須使閱聽人知道節目有接受贊助,贊助廠商之資訊必須與節目和廣告內容所有區隔。     2.頻道贊助廠商之資訊不得出現於禁止接受贊助之節目內容中或播放時間之前、後。     3.贊助廠商資訊之呈現不得過於明顯。     4.節目頻道不得以贊助廠商之名稱命名。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

歐盟提出人工智慧法律調和規則草案

  歐盟執委會(European Commission)於2021年4月21日提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(簡稱AI規則草案),旨在平衡「AI運用所帶來的優勢」與「AI對個人或社會所帶來的潛在負面衝擊」,促使會員國在發展及運用AI時,能採取協調一致的態度及方法,共同維護歐洲公民基本權利與歐盟價值。   歐盟自2019年起即倡議發展「值得信賴的AI」(Trustworthy AI)。AI規則草案之提出,除了落實執委會2019年至2024年之政策願景外,亦呼應2020年歐洲議會(European Parliament)之建議—針對AI應用之機會與利益採取立法行動,並確保合乎倫理原則。惟鑒於歐盟在環境、健康、公共事務、金融、交通、農業等領域對AI應用之高度需求,以及企業仰賴AI技術提升競爭優勢等因素,執委會係以「風險為基礎」之概念取向(risk-based approach)制定AI規則草案,避免對新技術發展造成不必要的限制或阻礙。   本規則草案將AI系統,依其「對歐盟基本權利或價值所創造的風險程度」,分為下列三種類型,並施以不同程度的監理方式: 一、不可接受之風險:原則上禁止使用此類型AI系統或使其進入歐盟市場。例如:利用潛意識技術操控個人、在公共場合利用「即時遠端生物辨識系統」進行執法、公務機關普遍對個人進行社會評分等。 二、高風險:於附錄中列出所謂高風險AI系統,要求高風險AI系統之提供者遵循風險管理、資料治理、文件紀錄保存、透明性與資訊揭露、人為監督、健全性、準確性與資安等要求;且AI系統進入歐盟市場前,需進行符合性評估(conformity assessment),進入市場後,則需持續監控。 三、非不可接受之風險亦非高風險:鼓勵AI系統提供者或使用者,自願建立行為準則(codes of conduct)。   AI規則草案亦鼓勵會員國建立AI監理沙盒(regulatory sandbox)機制,且以中小企業、新創公司為優先對象,使創新AI系統進入市場之前,能於可控環境中依明確計畫進行開發、測試與驗證。

TOP