歐洲發展智慧電網對資訊安全與隱私保護之現況

  歐盟執委會於2011年4月發布的「智慧電網創新發展」(Smart Grids: from innovation to deployment, COM(2011) 202 final),在有關資訊安全與隱私的部分指出,應建立消費者(consumer)隱私的保護規範,促進消費者的使用意願並瞭解其能源的使用狀況;在資訊交換的過程中,亦須保護敏感的商業資訊,使企業(companies)願意以安全的方式提供其能源使用訊息。

  歐盟保護個人資料指令(Directive 95/46/EC)是保護個人資料的主要規範,同時也適用在智慧電網個人資料的保護上,但此時則需要去定義何謂個人資料,因為在智慧電網的發展中,有些屬於非個人資料。若為技術上的資訊而不屬於個人資料的範圍,能源技術服務業者(energy service companies)則不須經同意即可讀取該些資訊以作為分析使用。考慮將來廣泛建置智慧電網後,各會員國可能遭遇如何認定是否為個人資料及其保護的問題,因此目前傾向採取「privacy by design」的方式,亦即在系統設計之初,即納入資訊的分類,而不做事後的判斷。

  對於此,歐盟執委會於2012年3月發布「智慧電表系統發展準備建議」(COMMISSION RECOMMENDATION of 9.3.2012 on preparation for the roll-out of smart metering systems),對於相關定義、資料保護影響的評估(例如各會員國必須填寫並提交執委會提供的評估表格,且提交後則必須遵循相關規範)、設計時的資料保護及預設(例如在系統設計時一併納入對資料的保護,使之符合資料保護的相關法規)、資料保護的方式(例如會員國必須確保個人資料的蒐集、處理及儲存是適當的並且具有關連性)、資料安全(例如對於資料偶然的或非法的破壞、或偶然的喪失等情形,亦應予以規範)、智慧電表的資訊與透明化(例如在蒐集相關個人資料後,仍應依規範提供資料主體相關的訊息)等方面提出建議,供各會員國於制訂相關規範時的依據。

相關附件
※ 歐洲發展智慧電網對資訊安全與隱私保護之現況, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5759&no=67&tp=1 (最後瀏覽日:2025/12/17)
引註此篇文章
你可能還會想看
印度宣布將推出數位印度法案取代過時的資訊科技法

印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)於2023年3月展開了一次公開諮詢和協商,介紹了印度政府以創建印度數位技術生態系統為目的而建構的法律新框架,該框架以《數位印度法案》(Digital India Act)為核心,用來取代已有22年歷史的《資訊科技法》(Information Technology Act)。MeitY強調,現行資訊科技法的創立時代背景中不僅缺乏電子商務、社交媒體平台等現代網路服務,甚至印度還未進入數位化時代,因此有必要進行通盤的法規調整,以符合當代和未來的社會變遷和對法規範的需求。 目前《數位印度法案》的草案細節尚未公布,但是MeitY的介紹揭露印度在未來政策中所重視的幾個方向: 1.新的中介類別:重新定義數位經濟產業中的中介機構類別(如數位媒體、搜尋引擎、遊戲、人工智慧、OTT平台、電信服務業者……等),並依據未來的技術發展及產業轉型,適時的調整新的分類。 2.網路犯罪刑事化:將網路犯罪(如網路色情、詐騙、霸凌、身分冒用或未經授權散播個人資料)歸類為刑事犯罪;過去的資訊科技法僅對此類行為予以罰款。 3.問責機制:建立一個線上的民刑事檢舉、審判機構,並且提供方便使用者採取權利救濟措施的線上管道;另外印度政府也將涉及演算法透明度(algorithmic transparency)、人工智慧的定期風險評估(periodic risk assessments)等評估機制納入監管項目的考量中。以建立網路用戶的權利救濟措施及數位服務者提供服務過程中的責任釐清。 4.防壟斷機制:提出開放網路(Open Internet)的概念,認為網路服務應該是具有選擇性的、容許競爭的、多樣性的,在確保網路服務的多樣性和非歧視性及非壟斷性的前提下運作;印度政府希望能夠監理佔有主導地位的廣告平台和應用程式平台,防止市場力量過度集中造成壟斷。 5.年齡門檻:對於未成年人在社交平台、遊戲和賭博程式中的資訊蒐集、資訊安全和隱私保護加以規範,並且避免以鎖定未成年人為對象的資料蒐集機制。 除了以上五點外,MeitY在介紹《數位印度法案》時也表示為了應對現今數位化時代的發展,並且確保公民的權利保障延伸到數位世界中,將承認被遺忘權(right to be forgotten)、不受歧視權(right against discrimination)和數位繼承權(right to digital inheritance)等數位時代中發展出來的權利。另外,將「推動公私部門及個人於使用數位資訊時的相關規範」以及「保護個人資料的資料保護法案」等議題做為評量指標,以做為規劃印度國家數位治理時的重要考量。這些方針都揭示了印度正在試圖踏上更有規模、更安全且可信賴的數位生態系統建置之路,《數位印度法案》的相關發展細節值得再持續關注。

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

美國新能源法案預定於2010年前興建新核電廠

  美國總統布希於本( 8 )月 8 日簽署能源法案,法案目的除減少對國外能源依賴外,另亦授權興建一座新核能發電廠。布希政府希望於 2010 年前開始建造核能廠。   儘管核能爭議大,但現今國際油價已飆高達每桶 63 美元,在美國參眾兩院日前通過、布希總統今簽署的能源法案中,同意興建的新核電廠,是美國自 1979 年三哩島事件以來,第 1 座預定興建的核能廠。   能源法案的通過,被視為是布希政府一大勝利,也是相關利益團體石油公司的勝利。布希自 2001 年上台即大力鼓吹此法案,經 4 年多爭議,眾參院才分別在 7 月 28 、 30 日通過。   除新建核電廠外,能源法案內容還包括:准許在海岸探勘石油與天然氣,這項鬆綁引起環保人士質疑;提供美國能源公司超 10 年 145 億美元的減稅優惠,這項優惠讓華府輿論質疑,減稅是「肥了石油公司,苦了消費者與納稅人」;另外,鼓勵開發新的潔淨能源、再生能源,提供 18 億美元的獎助,這項具有環保意義、找尋替代能源的條文,也被質疑資助少得可憐。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP