歐盟執委會於2011年4月發布的「智慧電網創新發展」(Smart Grids: from innovation to deployment, COM(2011) 202 final),在有關資訊安全與隱私的部分指出,應建立消費者(consumer)隱私的保護規範,促進消費者的使用意願並瞭解其能源的使用狀況;在資訊交換的過程中,亦須保護敏感的商業資訊,使企業(companies)願意以安全的方式提供其能源使用訊息。
歐盟保護個人資料指令(Directive 95/46/EC)是保護個人資料的主要規範,同時也適用在智慧電網個人資料的保護上,但此時則需要去定義何謂個人資料,因為在智慧電網的發展中,有些屬於非個人資料。若為技術上的資訊而不屬於個人資料的範圍,能源技術服務業者(energy service companies)則不須經同意即可讀取該些資訊以作為分析使用。考慮將來廣泛建置智慧電網後,各會員國可能遭遇如何認定是否為個人資料及其保護的問題,因此目前傾向採取「privacy by design」的方式,亦即在系統設計之初,即納入資訊的分類,而不做事後的判斷。
對於此,歐盟執委會於2012年3月發布「智慧電表系統發展準備建議」(COMMISSION RECOMMENDATION of 9.3.2012 on preparation for the roll-out of smart metering systems),對於相關定義、資料保護影響的評估(例如各會員國必須填寫並提交執委會提供的評估表格,且提交後則必須遵循相關規範)、設計時的資料保護及預設(例如在系統設計時一併納入對資料的保護,使之符合資料保護的相關法規)、資料保護的方式(例如會員國必須確保個人資料的蒐集、處理及儲存是適當的並且具有關連性)、資料安全(例如對於資料偶然的或非法的破壞、或偶然的喪失等情形,亦應予以規範)、智慧電表的資訊與透明化(例如在蒐集相關個人資料後,仍應依規範提供資料主體相關的訊息)等方面提出建議,供各會員國於制訂相關規範時的依據。
歐洲理事會在2022年10月5日公告歐盟加密資產市場監管法(The Markets in Crypto Assets regulation bill, MiCA)草案最終條文內容,此份草案已經歐洲議會眾議員通過並提交歐洲議會經濟貨幣事務委員會(European Parliament Committee on Economic and Monetary Affairs),MiCA將於2023年年初公告於歐盟官方公報,並於2024年生效施行。MiCA屬於歐盟數位金融政策(Europe’s Digital Finance Strategy)之一環,立法目的為統一多種加密代幣(crypto token) 發行和交易的法規架構,以保護加密代幣使用者和投資人權益,為歐盟金融法規未涵蓋的加密資產(如:穩定幣)提供法律確定性,及建立歐盟層級的統一規定。值得注意的是,相關規定歐盟目前並未排除適用於非同質的加密貨幣(non-fungible tokens, NFT)。 草案前言第6c點明文,不應考慮「獨特且非同質的加密資產」(unique and non-fungible crypto-asset)的小部分獨特性和非同質性,因為大量以一系列NFT形式發行加密資產應認定是具備同質性(fungibility)之指標。從而,未來在歐盟發行NFT將適用MiCA規定,包含: 一、適用傳統金融機構資金轉帳規則(travel rules),如:確保加密資產交易可被追蹤、得封鎖可疑交易等以達到防制洗錢與打擊恐怖主義融資之目的。 二、NFT作為一種加密資產,該服務供應商必須確認加密資產來源,確保加密資產並未涉及洗錢或恐怖主義融資之風險。 三、應透過NFT服務供應商協助,才能進行用戶間交易和轉帳。
德國聯邦參議院通過保護數位世界隱私之《電信與電子媒體資料與隱私保護法》德國聯邦參議院於2021年5月28日通過《電信與電子媒體資料與隱私保護法》(Gesetz zur Regelung des Datenschutzes und des Schutzes der Privatsphäre in der Telekommunikation und bei Telemedien, TTDSG),其目的係保護數位世界中的資料與隱私,平衡數位服務使用者利益與公司經濟利益,並解決因德國電信法(Telekommunikationsgesetz, TKG)、電信媒體法(Telemediengesetz, TMG)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)同時並行,使消費者、電信服務提供者以及監管機關不確定如何適用上開法律之情況。 TTDSG彙集TKG、TMG中資料與隱私保護相關之條文,包含電信保密(Fernmeldegeheimnis)(第3條至第8條)、交通位置資料(第9條至第13條)、來電通知與號碼顯示(第14條至第16條)、終端使用者名錄和相關資料提供(第17條至第18條),以及允許匿名化、可隨時停止使用服務和保護未成年之相關措施(第19條至第23條),並參考GDPR和電子隱私保護指令(ePrivacy-Richtlinie)新增數位遺產(digitaler Nachlass)、終端設備隱私保護、同意管理以及監管之規定。 TTDSG於第4條新增數位遺產規定,終端使用者繼承人或具有相似法律地位者,可以向供應商行使繼承人權利,不受電信保密相關規定限制;在終端設備隱私保護和同意管理之部分,TTDSG第24條規定原則上第三方僅能在終端使用者同意下,於使用者的終端設備中儲存與近用資料,且當事人可隨時撤銷同意。 最後在監管方面,則分為個人資料保護相關與電信媒體領域,前者依TTDSG第28條、第29條由德國聯邦資料保護與資訊自由委員會(Die Bundesbeauftragte für den Datenschutz und die Informationsfreiheit, BfDI)作為獨立的資料保護監管機構,後者則依TDSG第30條屬德國聯邦網路局(Bundesnetzagentur)的職權範圍。
澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).
美國國家安全局發布「軟體記憶體安全須知」美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。