紐西蘭IT專家組織2012年5月發布雲端運算實務準則

  紐西蘭最為歷史悠久的IT專家組織(Institute of IT Professionals NZ)於2012年5月發布雲端運算實務準則(Cloud Computing Code of Practice),藉此彌補實務上缺乏雲端運算標準與實務指針的問題;本準則為自願性遵循規範,以紐西蘭為市場的外國雲端業者、及紐西蘭的業者皆可適用之,並可向公眾宣示其已遵行此準則,然倘若未遵行而為遵行之宣示,則屬誤導或詐欺行為而觸犯公平交易法(Fair Trading Act 1986)。本準則有四個主要目標:1. 促進紐西蘭雲端產業的服務標準;2. 確立應揭露(disclosure)的標準;3. 促進雲端服務提供者與用戶間就資料保護、隱私與主權等事項的揭示;4.強化紐西蘭雲端運算產業的整合性。

 

  依據此準則,雲端業者的資訊揭露範圍至少應包含業者基本資料、資訊所有權、管理及保護、與服務提供之適當管理措施等。在資訊所有權層面,業者應表明是否對所上載的資料或資訊主張所有權;而當用戶透過雲端服務利用或傳輸的資料而儲存於其他上游業者的網路或系統時,業者應確認其資料所有權之歸屬。

 

  在資料管理與保障層面,業者應表明遵從何種資訊安全標準或實務,其已向美國雲端產業聯盟(Cloud Security Alliance)進行STAR登記,或者已通過其他標準的驗證;此外應表明儲存資料伺服器之一處或多處所在地。再者,業者亦須表明服務關係繼續中或終止後,業者或客戶對於客戶所擁有資料之存取權限。

 

  在服務提供的適當管理措施上,包含業者的備份(Backup)程序及維護措施,皆應為揭露,使用戶得據以評估是否採取進一步的資料保護措施;此外包括服務的繼續性要求,如備援措施…等,亦應為揭露;又鑒於雲端服務有地理多樣性(Geographic Diversity)的特質,業者應使用戶知悉其提供服務、或營業活動的地點,以判斷此等服務可能適用的法權(Legal Jurisdiction)。

 

  依據此準則,雲端業者亦可例如透過服務水準協議(Service Level Agreement)對個別用戶承諾特別的服務支援方案,以提供更好的服務品質。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 紐西蘭IT專家組織2012年5月發布雲端運算實務準則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5797&no=0&tp=1 (最後瀏覽日:2025/11/23)
引註此篇文章
你可能還會想看
基因專利新發展

  隨著基因工程的逐漸成熟,關於現代生物技術可否取得專利,引起激烈的公開辯論。為了澄清這些問題,歐盟和美國曾採取重要的立法和行政措施,如歐洲議會和理事會關於生物技術發明的98 / 44 / EC指令 ,及美國專利商標局2001年1月5日所修改的確認基因有關發明實用性指南(Guidelines For Determining Utility Of Gene-Related Inventions of 5 January 2001)。   然而,美國最高法院於2013年《Association for Molecular Pathology v. Myriad Genetics, Inc.》一案中認為,自然發生的DNA片段是自然界的產物,不因為其經分離而具有可專利適格性,但認為cDNA(complementary DNA,簡稱cDNA)具有可專利適格性,因為其並非自然發生。該判決強調Myriad Genetics, Inc.並未創造或改變任何BRCA1和BRCA2基因編碼的遺傳信息,即法院承Myriad Genetics, Inc.發現了一項重要且有用的基因,但該等基因從其週邊遺傳物質分離並非一種發明行為。不過,法院也認為“與經分離的DNA片段屬於天然發生者不同,cDNA則具有可專利性。”因此,“cDNA非自然的產物,且根據美國專利法第101條具有可專利性。”   其次,美國於2012年3月《Mayo Collaborative Services v. Prometheus Laboratories》案認為,檢測方法僅為揭露一項自然法則,即人體代謝特定藥物後、特定代謝產物在血液中濃度與投與藥物劑量發揮藥效或產生副作用的可能性間的關聯性。即使需要人類行為(投以藥物)來促使該關聯性在特定人體中展現,但該關聯性本身是獨立於任何人類行為之外而存在,是藥物被人體代謝的結果,因此,全部應為自然過程。而不具有可專利性。

英國「數位服務稅」

  英國在2019年7月11日於《2019-2020年財務法案》(Finance Bill 2019-20)之中,提出「數位服務稅」(Digital Services Tax)草案。《2019-2020年財務法案》已於2019年7月22日獲得御准(Royal Assent),並於2020年4月1日開始向跨國數位服務業者課徵2%數位服務稅。英國數位服務稅的主管機關「稅務海關總署」(HM Revenue and Customs)指出:「數位服務稅並不會影響個人,課徵的對象為大型跨國數位服務業者,如搜尋引擎(Search Engine)、社交媒體服務(Social Media Service)、線上購物平台(Online Marketplace),包含在這些平台上營運的廣告。」英國課徵2%數位服務稅的對象為於全球營收超過5億英鎊,且2,500萬英鎊的營收來自英國用戶(UK User)的數位服務業者,其中,首次於英國營收達2,500萬英鎊者,可以免課徵一次。所謂英國用戶指的是慣居於英國之人(Normally Located in the UK),只要交易的其中一方為英國用戶,則整個交易收益視為應課徵數位服務稅之營收。營收計算方式涵蓋任何與平台營運相關的商業行為,所有來自於英國用戶的營收均會被列入計算,至於廣告收益則是以投放目標客群為英國用戶作為計算   因應全球化與數位化,七大工業國組織(G7)、二十國集團(G20)、經濟合作暨發展組織(OECD)相繼推出數位服務稅作為永續的策略。英國原先亦不存在數位服務稅相關法制,直至2019年7月11日才於《2019-2020年財務法案》提出,並開始徵詢公眾意見。英國政府期待透過數位服務稅的政策,讓稅務課徵更加公平、增進公共利益。目前,英國政府並沒有明定數位服務稅的落日條款,然而英國政府於政策報告書中說明,假設國際上有更完善的解決方案,即會停止數位服務稅的課徵。

學名藥品侵權 v. 競爭法中的假訴訟
Generic Drug’s Patent Infringement v. Sham Litigation in Antitrust

  美國聯邦第三巡迴上訴法院於2014年時對於Takeda Pharmaceutical Co.(Takeda) v. Zydus Pharmaceuticals (Zydus) 一案判定:學名藥廠Zydus並無構成專利侵權,且原廠Takeda於本案的系爭專利並無失效[1]。惟本案的學名藥廠Zydus隨後向Takeda提起另一訴訟:Zydus聲稱該案的專利侵權訴訟是假訴訟(sham litigation)[2],亦即,Takeda 提起專利侵權訴訟之本意在於阻卻Zydus的學名藥參與市場競爭,而非旨在確認侵權事實或請求賠償。Takeda隨後提起反訴,主張美國The 1984 Hatch-Waxman Act[3]已明確賦予專利權人提起專利權侵權訴訟之權利,既有訴訟權,便無假訴訟之虞。   美國聯邦貿易委員會(Federal Trade Commission, FTC)對於上述兩藥廠間的假訴訟爭議,在2018年6月時發布法庭之友意見書(amicus brief [4]),以5-0決議呼籲本案法院應對於假訴訟爭議進行審查。本意見書指出,The 1984 Hatch-Waxman Act、競爭法、專利法或其他醫藥法規,無任何關於藥品侵權訴訟得以免除假訴訟審查之規定。再者,FTC實有權限依據豁免原則(Noerr-Pennington Doctrine)及相關判例,就主觀與客觀要件,審查相關爭訟是否為假訴訟:(1)該爭訟程序客觀上是否無理由,提出爭訟者現實上是否不期待勝訴;(2)該爭訟程序當事人主觀上是否有意利用程序,直接地干擾競爭對手的商業關係。本意見書並進一步說明,原廠Takeda所提專利權侵權訴訟,即使學名藥廠Zydus之專利侵權事實為真,惟只要Takeda行為符合假訴訟主、客觀要件,仍有可能構成假訴訟;亦即,「是否侵權」與「是否該當假訴訟」兩者之判斷是分開的。 [1] 原廠藥之英文為branded drug,指一個藥廠自研發、生產、上市,而握有專利權之藥品,通常具有強大品牌名聲、價格通常也高;學名藥廠則是待原廠藥專利權屆滿後、或以侵權之方式,而製造與原廠藥相同或相似之藥物,學名藥價格相對較低,但在安全與效用上時常有疑慮。 [2] 美國競爭法豁免原則(Noerr Pennington Doctrine)下,私人爭訟方或單位,運用爭訟或政府程序等以促進法案的通過、增進法律執行等,免除競爭法之相關責任。但該責任免除之原則下,當事人若僅是利用政府或爭訟程序作為有害市場競爭的工具,並無合法地尋求正面結果; 或該爭訟僅是純粹的假訴訟,以干擾正當商業關係或市場競爭時,無該原則免除競爭法相關責任的適用,亦即,仍須受到競爭法的檢視與求責可能。 [3] The 1984 Hatch-Waxman Act 旨在促進學名藥參進市場競爭、兼顧學名藥與原廠藥間的利益保護,並明定原廠藥與學名藥廠均有權利提起專利權合法爭訟(validity),以避免學名藥進入市場的受阻、也欲杜絕學名藥廠進行藥品侵權行為。 [4] 此指法庭意見書,乃為了釐清法律爭議或協助解釋法律等所提之文書,供參考用、不具強制法律效力,我國翻譯則稱法庭之友。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP