紐西蘭最為歷史悠久的IT專家組織(Institute of IT Professionals NZ)於2012年5月發布雲端運算實務準則(Cloud Computing Code of Practice),藉此彌補實務上缺乏雲端運算標準與實務指針的問題;本準則為自願性遵循規範,以紐西蘭為市場的外國雲端業者、及紐西蘭的業者皆可適用之,並可向公眾宣示其已遵行此準則,然倘若未遵行而為遵行之宣示,則屬誤導或詐欺行為而觸犯公平交易法(Fair Trading Act 1986)。本準則有四個主要目標:1. 促進紐西蘭雲端產業的服務標準;2. 確立應揭露(disclosure)的標準;3. 促進雲端服務提供者與用戶間就資料保護、隱私與主權等事項的揭示;4.強化紐西蘭雲端運算產業的整合性。
依據此準則,雲端業者的資訊揭露範圍至少應包含業者基本資料、資訊所有權、管理及保護、與服務提供之適當管理措施等。在資訊所有權層面,業者應表明是否對所上載的資料或資訊主張所有權;而當用戶透過雲端服務利用或傳輸的資料而儲存於其他上游業者的網路或系統時,業者應確認其資料所有權之歸屬。
在資料管理與保障層面,業者應表明遵從何種資訊安全標準或實務,其已向美國雲端產業聯盟(Cloud Security Alliance)進行STAR登記,或者已通過其他標準的驗證;此外應表明儲存資料伺服器之一處或多處所在地。再者,業者亦須表明服務關係繼續中或終止後,業者或客戶對於客戶所擁有資料之存取權限。
在服務提供的適當管理措施上,包含業者的備份(Backup)程序及維護措施,皆應為揭露,使用戶得據以評估是否採取進一步的資料保護措施;此外包括服務的繼續性要求,如備援措施…等,亦應為揭露;又鑒於雲端服務有地理多樣性(Geographic Diversity)的特質,業者應使用戶知悉其提供服務、或營業活動的地點,以判斷此等服務可能適用的法權(Legal Jurisdiction)。
依據此準則,雲端業者亦可例如透過服務水準協議(Service Level Agreement)對個別用戶承諾特別的服務支援方案,以提供更好的服務品質。
本文為「經濟部產業技術司科技專案成果」
歐洲人權法院(ECtHR)在去年(2012)12月作出一項因封鎖網路而侵害言論自由的判決。該判決認為土耳其政府封鎖整個Google網站的行為,已違反歐洲人權公約第10條關於言論自由之保障。 土耳其法院在2009年審理侮辱有土耳其國父之稱的凱末爾將軍案時,判決封鎖設在Google平台的某網站,但土耳其通訊主管機關(Telecommunications Directorate)向法院建議,因技術上問題,建議封鎖整個Google網域才能達到效果,此舉連帶影響本案上訴人架設於Google平台上的網站也一併遭致封鎖,上訴人在窮盡國內訴訟程序後,進而向歐洲人權法院提告。 歐洲人權法院認為,網路目前已經成為表達言論的一個重要工具與場域,根據歐洲人權公約第10條規定,立法限制言論自由必須明確,以便當事人能夠遵循。但土耳其法令(Law no. 5651)並無可封鎖整個網域之相關規定;此外,亦有證據顯示土耳其政府並未盡告知義務,且該網路平台Google亦無拒絕遵循當地國法令之情形;至於通訊主管機關建議法院封鎖整個Google網域行為,亦違反土耳其法令(Law no. 5651)之授權範圍。因此歐洲人權法院認為土耳其政府已經違反歐洲人權公約第10條規定。 根據歐洲安全與合作組織(Organization for Security and Co-operation in Europe)的調查指出,在2012年土耳其政府至少封鎖了3700個網站,包括YouTube、DailyMotion、Google等知名網站。 而總部設在倫敦的維護言論自由知名組織Article19(取名自世界人權宣言第19條言論自由保障而來)主任Agnes Callamard博士也指出,本案是網路言論自由的重大勝利,尤其是當前各國政府積極尋求各種網路管制手段時,更應注意立法限制言論自由必須具有明確的法源基礎且應有救濟管道,以落實歐洲人權公約保障言論自由之意義。
澳洲發布「數位健康2018-2019年報」針對「我的健康紀錄系統」提出檢討及建議澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年11月發布「2018-2019年數位健康年報」,其中針對「我的健康紀錄系統」(My Health Record System)日前發生資料外洩事件提出檢討及隱私建議。 「我的健康紀錄系統」於2012年開始由澳洲數位健康局(Australian Digital Health Agency)負責維運,所有健康報告以電子形式通過網站存檔或讀取,包括處方藥紀錄、醫生診療記錄、影像檢查以及其它測試紀錄等,所有資訊將置於網路並授權醫療專業人員,例如醫生、藥劑師、醫院工作人員和專職醫療人員(例如護士或物理治療師),均可登錄查詢。 「我的健康紀錄系統」原先以民眾自願選擇加入模式運作,以選擇性線上註冊方式概括同意健康資料存取。隨後為促進醫療產業發展,澳洲政府宣布「我的健康紀錄系統」全國適用並提供退出機制至2019年1月31日。而2018年澳洲修訂「我的健康紀錄法」(My Health Records Act 2012)強化個人資料管理相關規範,例如:提供永久刪除權、不得適用於保險目的、違反關鍵隱私保護而增加民事和刑事處罰等。 「2018-2019年數位健康年報」指出,隨著「我的健康紀錄系統」於2019年2月從選擇性註冊模式變為退出模式,關於隱私疑慮的查詢和投訴大幅增加。2018年至2019年OAIC收到57件投訴案,OAIC更對數位醫療產業中的受監管企業進行隱私評估,包括私人醫院、藥房等。為解決民眾疑慮,「我的健康紀錄法」修訂賦予永久刪除權,使投訴數量開始遞減,OAIC亦為醫療服務提供者發布有關保護患者個人健康資料相關指引,並與衛生部門組織合作,促進良好的隱私保護觀念,以增進健康服務提供者對預防和應對資料外洩的理解。
日本《外包法》日本外包法,正式名稱為外包價金給付遲延等防止法(下請代金支払遅延等防止法,又簡稱下請法),其制定目的在於確保大型企業外包其業務予中小型企業時之交易公正性,防止外包業者濫用其相對於承包業者之優勢地位,並保護承包之小型業者的利益,而該法的主管機關為公平交易委員會(公正取引委員会)。 依該法規定,於以下情形有本法之適用:(1)業者發包委託承包業者製造、修理物品與委託承包商提供該法授權行政命令訂定列舉的資訊成果產品(製作程式)或服務(運送、將貨品保管在倉庫、資訊處理),且發包之大型企業資本額 3億日圓以上、承包之小型企業資本額3億日圓以下,或發包企業資本額於3億元以下1000萬日圓以上、承包企業資本額在1000萬日圓以下時;或(2)業者發包委託承包業者作成非屬上述行政命令所列舉之資訊成果產品(如製作電視節目或廣告、設計商品、產品之使用說明書等)、或提供非屬行政命令列舉之服務(如維修建物或機械、提供客服中心服務等),且發包業者資本額5000萬日圓以上、承包業者資本額在5000萬日圓以下,或發包業者資本額在5000萬日圓以下1000萬日圓以上、承包業者資本額於1000萬日圓以下。 符合上開法定要件時,發包業者應訂定契約價金之給付期日,不得遲延給付價金,若給付遲延則有義務支付遲延之利息等,同時禁止發包業者拒絕受領承包業者交付的履約標的,禁止無故減少契約價金、退貨、或對承包業者採取報復性措施。若發包業者違反上述規定,則由日本中小企業廳或該發包業者之事業主管機關請求日本公平交易委員會(公正取引委員会)採取相應措施,該會則得據此針對該違反行為向發包業者作出書面勸告,同時對外公開該發包業者之公司名稱、其違反行為之事實概要、以及勸告內容的概要。此外,為防止口頭約定造成日後衍生交易糾紛,發包業者於下單時,應以書面明確約定並記載例如承包業者的履約標的、契約價金數額等法定應記載事項,並在下單後立即交付該書面予承包業者,如違反,得對該發包業者課予50萬日圓以下罰金。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).