美國國會通過700MHz D區段頻譜之規範

  為實施公共安全網路計畫,美國國會在2012年二月通過「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012),將700MHz頻段中既有存在之公共安全寬帶頻譜(763-769 MHz/793-799 MHz)與相鄰的D block的頻段(758-763MHz與788-793MHz)規劃成 「互通公共安全寬頻網路」(interopertable public safety broadband network),進行頻譜拍賣。
  雖FCC經本法案授權執行D Block頻段的拍賣,但也限縮其職權規定FCC不得限制任何特定業者參與競標。針對FCC職權受到限制,業者認為可避免FCC在拍賣期間逕自訂定特別規則之情形。但法案仍保留FCC執行「普遍適用性的規定」(rules of general applicability)之權利,以頻譜聚合(spectrum aggregation)的規定促進市場競爭。對此,主導業者擔心FCC可能藉採取「頻譜上限」 (spectrum cap)的管制手段來限制其獲得大量頻譜的機會。
  另外,面對全國性公共安全寬頻網路部署之需要,國會將授權行政部門建立「緊急救難管理局」(First Network Authority, FirstNet)來進行整體網路之開發規劃。在FirstNet尚未成立之前,FCC將暫時承擔此一過渡期間管理全國公共安全寬頻網路之責任。但FirstNet在未來是否能依照國會所期待順利掌管整體公共安全寬頻網路之運作,並達成建構一跨機關、部會以及區域的無縫互通寬頻網路平台(a nationwide interoperable public safety broadband network)之期望,FCC認為該局所任命之委員會委員所具備之專業度,以及各聯邦機構是否充分的支持將是成功之關鍵。

相關連結
相關附件
※ 美國國會通過700MHz D區段頻譜之規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5824&no=0&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
開放非銀行事業從事預付式行動付款服務法制議題之研究

昇陽進入開放原始碼 Solaris 時代

  昇陽公司本月十四日把 500 多萬行 Solaris 核心 (kernel) 的原始碼張貼在 OpenSolaris 網站上。不過,一些原始碼元件,像是安裝程式與管理工具,因為仍在逐行檢視以免專利侵權問題,稍後才會推出。   Solaris 是使用率相當廣的一種 Unix 衍生版本,在一九九○年代末期網路泡沫時期大行其道,但後來隨開原碼作業系統 Linux 竄起而式微。同時,微軟的 Windows 作業系統,也蠶食著昇陽的市占率。為了讓 Solaris 成為開放原始碼軟體,昇陽積極拉攏軟體開發人員,軟體開發人數增多,可能引來更多的使用者、更多的合作夥伴,以及更多的軟體開發者。然而,要與氣勢正旺的 Linux 競爭,並非易事。 Solaris 開發工程僅傾昇陽一家公司之力,但 Linux 幕後卻有廣大的開發人員社群支持。   Quandt Analytics 分析師 Stacey Quandt 說,與外部程式設計師分享權力,是昇陽必須通過的考驗。對昇陽來說,真正的挑戰是,昇陽是否真能容納局外人貢獻的修補程式,而且不叫昇陽經驗老到的工程師加以改寫。   OpenSolaris 是昇陽自行研發的專屬計畫,但不表示一定會失敗。 IBM 即曾經以 Eclipse 程式設計工具為中心,建立起活力十足的開原碼社群,就是成功的例子。昇陽雖來不及按原訂計畫在二○○四年推出 OpenSolaris ,但已推動一些配套措施,包括在今年一月發布稱為 DTrace 的元件,提供詳細的效能分析;吸引一百五十位外部程式設計人員參與 OpenSolaris 測試計畫;並成立由五人組成的社群顧問委員會,其中兩席是昇陽的代表。

「你在哪裡? 我正在看著你!! 談行動定位服務與隱私權保護」

日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP