歐盟執委會於2009年4月23日發布再生能源指令(DIRECTIVE 2009/28/EC),目標在2020年達成20%的再生能源利用;並於2011年1月31日發布「再生能源:邁向2020目標」(Renewable Energy: Progressing towards the 2020 target)通訊報告,檢視歐洲再生能源產業概況及所面對的挑戰,透過與「歐洲及國家再生能源領域之財務檢視」(Review of European and national financing of renewable energy in accordance with Article 23(7) of Directive 2009/28/EC)、「運輸領域使用生質燃料及其他再生燃料的發展及技術評估」(Recent progress in developing renewable energy sources and technical evaluation of the use of biofuels and other renewable fuels in transport in accordance with Article 3 of Directive 2001/77/EC and Article 4(2) of Directive 2003/30/EC)及「生質燃料及生質燃油永續計畫報告」(Report on the operation of the mass balance verification method for the biofuels and bioliquids sustainability scheme in accordance with Article 18(2) of Directive 2009/28/EC)等三份報告的結合,瞭解再生能源領域發展所須的支出、確保其品質、運用最有效率及最具經濟效益的手段,架構歐洲再生能源利用之2020年目標。
為達此一目標,各會員國自行採取相關措施加以推動,每年投入的資金呈倍數的成長;然在2020年之後,卻未見相關政策規劃。為持續發展再生能源,執委會於2012年6月6日發布「再生能源:歐洲能源市場的重要角色」(Renewable Energy: a major player in the European energy market)通訊報告,呼籲各會員國在相關計畫的建立與改革採取更協調一致的措施,提升會員國間再生能源的交易,並探討2020年之後再生能源的發展框架。此一通訊報告包含兩部分:第一、為達2020年的再生能源發展目標,指出四個須加速推動的領域;第二、開始思考2020年後之規劃框架。
針對應加速推動以達成2020年發展目標的四大領域,包括(1)能源市場、(2)支援計畫(support schemes)、(3)合作機制、(4)地中海區能源合作計畫。歐盟執委會堅持達成境內能源市場的整合,並認為有必要提供投資獎勵,以順利進行。對於相關支援計畫,應鼓勵降低成本並避免過度補貼;由於支援計畫多由各國政府主導,而各國可能有缺乏透明度、突然終止、甚至補助差異,造成市場運作模式的阻礙,因此執委會呼籲透過跨國的合作來解決。此外,執委會鼓勵增加合作機制,使會員國間能透過再生能源的交易、降低成本,以達成再生能源利用目標。針對地中海區的能源合作計畫,執委會建議改善其管理框架,並著重於整合馬格里布地區(Maghreb)的市場,將有助於大規模投資,進口再生能源電力。
針對2020年後之發展,則應兼顧創新與降低成本,促進對再生能源的投資。依據歐洲「2050能源路徑圖」(Energy Roadmap 2050)之規劃,開始探討邁向2030的發展策略,主要仍以溫室氣體排放、再生能源及能源效率為政策目標。執委會強調,儘速確定2030年的發展規劃至關重要,此規劃並應使再生能源業者在能源市場上提升其競爭力。
歐盟於2022年6月29日提出《2022年前瞻策略報告:新地緣政治下之綠能與數位轉型雙生》(Twinning the green and digital transitions in the new geopolitical context,以下簡稱《2022年前瞻策略報告》),促進氣候與數位的協同和一致性,以面對現今與2025年的挑戰。歐盟主席Ursula Gertrud von der Leyen曾於2019年指出,綠能與數位轉型為首要的任務;鑒於俄羅斯與烏克蘭之戰爭,歐洲正加速提升於氣候與數位之全球性領導地位,聚焦於能源、糧食、國防與尖端技術之關鍵挑戰。《2022年前瞻策略報告》提出願景與雙生轉型(twin transitions)互動的整體分析,考量新興技術的角色,和地緣政治、社會、經濟與法規的因素,以塑造雙生,相互強化,並降低戰略依賴。 《2022年前瞻策略報告》確立十大關鍵行動,以擴大機會並減少源於雙生的潛在風險。該關鍵行動分別為: 1、在變化的地緣政治環境,歐盟需在轉型的關鍵領域中,持續強化其彈性與開放戰略的自主權。 2、歐盟須致力於促進全球的雙生轉型。 3、歐盟須策略性的管理關鍵商品的供應鏈,以達成雙生轉型,並保持其經濟上之競爭力。 4、在轉型的過程中,歐盟須強化社會與經濟上的凝聚。 5、教育與訓練系統須能適應新的社會經濟現實。 6、額外的投資須能轉向於支持技術與基礎設施。 7、引導轉型須有穩健與可信賴的監控框架。 8、具未來性與敏捷性的歐盟立法框架,須以單一市場為核心,將有利於具持續性的商業模型與消費模式。 9、制訂標準(Setting standards)為雙生和確定歐盟朝競爭持續性發展的關鍵。 10、更強健的網路安全與資料共享框架必須對潛在的雙生技術解鎖。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
營業秘密與競業禁止-簡評臺灣高等法院台南分院102年度上易字第212號判決 全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。