美國聯邦通信委員會(FCC)批准,有線電視業者可對其基本電視服務進行完全加密,有線電視用戶將需要向有線電視業者租用機上盒或使用CableCARD的技術,以繼續收看有線電視。在本項新規則發布之前,有線電視業者被禁止在基本服務加密,有線電視用戶不需租用額外設備便能收看基本電視服務內容。業界人士表示,據估計目前約有近5%非法盜接的服務,造成每年約5億美元的收入損失,此一新規則有助於對抗訊號盜接的問題。
同時隨著數位有線電視普及程度的提高,大多數有線電視用戶已經透過機上盒或CableCARD技術收看有線電視,僅少部份用戶可透過特殊裝置接收數位電視基本服務,但因為此種接收方式無須加密,因此存在有盜接的問題,因此有線電視業者希望FCC能夠放寬規定,使業者可將整個有線電視系統均加密傳輸,避免訊號盜接的問題。
然而相對的,一些第三方公司所生產的設備將因為有線電視系統業者的加密,而無法提供低成本的替代裝置,有線電視用戶將必須向有線電視公司租用機上盒,部份第三方公司生產的機上盒具有DVR功能,如果系統業者完全加密他們的內容,這些第三方設備的生產將必須花費額外的成本與時間與系統業者協商。有線電視業者如Comcast自然是抱持樂觀其成的看法,全系統加密使業者可在遠端管理電視訊號之播送,而無須至消費者家戶進行,可節省人力與成本。
奈米科技發展愈加成熟,藥物和生物製劑包括主成分、賦形劑等都可能使用奈米物質,奈米藥品可包括口服藥、注射劑及局部外用藥,且適應症亦愈來愈多樣化。隨著奈米藥物申請送審的件數增加,美國食品及藥物管理局(U.S. Food and Drug Administration, USFDA)對於此類藥物的審查,除了依既有的藥品審查原則,亦必須針對奈米物質粒徑小的特性,評估粒徑之改變,是否會影響藥品製劑安全性、療效及品質。 美國食品及藥物管理局於2022年4月22日發布含有奈米粒子藥物之最終版產業指引,該指引的範圍涵蓋生物製劑以及基因治療,其要點包含:相關藥物開發原則、品質、研究具體考量因素,以及學名藥的簡易新藥查驗登記申請方式(Abbreviated New Drug Application, ANDA)。 USFDA 曾於2017年12月18日發布該指引的草案,在綜整各方意見後,本次最終版指引新增兩點修正,首先是於第27頁以下新增指引裡常用的26個名詞解釋,以協助讀者理解該份指引的重要術語;其次是學名藥廠於查驗登記時不能只證明製劑相等性,更要提供藥物動力學、藥理學、毒物學等證據以證明足夠的生物相等性,才可取得上市許可。 台灣目前仍在藥事法與特定醫療技術檢查檢驗醫療儀器施行或使用管理辦法,甚至過渡至再生製劑管理條例之法令結構調整過程中,並深受國內醫療環境與產業現況的影響;面對新興藥物研發方法在後疫情時代的快速發展,對產業可能帶來的衝擊與影響,如何並重藥物監理的審驗標準與前瞻性的促進更多有助新興藥物的發展,助益於我國老齡化社會結構的轉變,可更前瞻的參考USFDA最終版指南與標準,以加速台灣細胞治療或奈米藥物發展。
中國大陸布局推動智慧城市建設,發布「2013年測繪地理信息藍皮書」中國大陸近年來積極布局智慧城市建設,並逐步將智慧城市的概念發展為具體的地理空間,2014年2月14日智能系統國家測繪地理信息局測繪發展研究中心--社會科學文獻出版社,發布2013年測繪地理信息藍皮書—《智慧中國地理空間智能體系研究報告(2013)》(以下簡稱「藍皮書」),揭示提出打造2030年智慧中國地理空間智能體系的具體目標。係以巨量地理資訊資源為基礎,透過新一代網際網路,以智慧聯網(Internet of Things, IoT)、雲端計算(Cloud Computing)和巨量資料(Big Data),實現地理資訊的智慧化應用,並透過相關政策形成以地理資訊獲取、處理及應用為主的雲端產業鏈。 自2013年起,中國大陸國家測繪地理信息局每年選擇10個城市作為智慧城市建設試點,目前已有太原、廣州、徐州、臨沂、鄭州等試點城市完成初步項目,正進行設計論證及完善基礎設施等工作。該局副局長李維森並指出,大陸將在2015年全面完成數字城市地理空間框架建設,並於此基礎升級為智慧城市。 中國大陸國土資源部亦從2013年底配合「十二五規劃」逐步推動以雲端運算、巨量資料以及智慧聯網等新一代資通訊技術所建構之「國土雲」,以滿足國土資源資訊利用、查詢、監管的需求,並透過資訊數位化,為其他領域重大工作提供基礎資訊。 從中國大陸近年來對於國家地理資源之蒐集、調查與管理手段觀察,可探知其對於國土資訊產業發展的高度重視,並欲在維護國土安全的前提下,加強推動有助於促進資訊流通效率以及資源廣泛利用的公共服務平台建設;對於此等具有國家安全戰略意義之新興科技領域,目前仍以國家投資為主要推動手段,後續相關法規發展殊值注意。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。