美國電影協會(Motion Picture Association of America, MPAA)和美國唱片業協會(Recording Industry Association of America, RIAA)於2011年6月共同組成著作權資訊中心(Center for Copyright Information,簡稱CCI),並說服Verizon、AT&T、Time Warner、Comcast、Cablevision等美國5大網路服務提供者加入,簽訂備忘錄,表示合作建置「著作權警告系統(Copyright Alert System,簡稱CAS)」,又謂「Six Strike系統」,該網站可向有提供下載非法檔案服務之網站業者發出警告或給予處罰,預計於2013年正式運作。
所謂「Six Strikes」,係指網路服務提供者發現有盜版行為時,會發出不同程度的6次警告。至於Six Strikes系統運作方式,係由各網路服務提供者自行決定要採取可有效打擊網路盜版的方式。目前美國5大網路服務提供者中,除Comcast及Cablevision以外,其它3個網路服務提供者已公開Six Strikes警告措施內容。
基本上,第1、2次警告屬於「通知(notice)」,僅利用電子郵件或電話通知使用者已侵害著作權;第3、4次警告屬「承認(acknowledgement)」,即利用彈跳視窗(pop-up)告知使用者侵害著作權情形已有3次以上等訊息,並且使用者應點選該告知侵權訊息之彈跳視窗方可進入其欲瀏覽的網站,使用者若點選視窗則視為其承認本身侵權行為;第5、6次警告則屬「因應措施(mitigation)」,即其它3個網路服務提供者會讓使用者感受到上網速度變慢,或是直到使用者上完著作權教育課程前,不讓其進入常瀏覽的網站等措施,而使用者亦可對網路服務提供者採取的措施提出異議。
但仍有論者對此提出不同看法,諸如若使用者利用虛擬私人網路(VPN)或非BitTorrent之檔案共享形式,分享檔案,即可迴避Six Strikes系統,或有論者認為侵權與否應由法院判斷,而非由網路服提供者逕行判斷等質疑,此一系統後續發展有待進一步關注。
由於日本近年研發品質、數量停滯不前,加上企業研發效率亦落後於外國,經濟產業省(簡稱經產省)於2024年6月21日從三個面向提出政策建議,期能打造成功創新模式。重點如下: 1.發揮新創企業與大企業優勢,促進研發投資 由於研發投資具有回收期間長、獲利不確定等特徵,短時內難以看到成效,故為鼓勵企業持續投入研發,經產省擬制定研發投資效率評價指標,並將透過「新創培育五年計畫」(「スタートアップ育成5カ年計画)下之「新創推動框架」(スタートアップ推進枠),將科研預算優先分配予重點項目,以建立友善研發環境。 2.透過新創資源流動,促進商業化和創造附加價值 新創企業初期往往受限於人力、技術和設備等資源不足問題,難以快速成長及擴張。為解決上述問題,經產省擬制定「跨領域學習」指引及案例集,期能促進新創資源流動,打造創新生態系統。 3.以需求為導向之前瞻技術研發 部份具有高度發展潛力之前瞻技術,如量子和核融合等,因研發風險較高且市場需求不明,將由新能源‧產業技術綜合開發機構(新エネルギー・産業技術総合開発機構)、產業技術綜合研究所(產業技術綜合研究所)等法人進行研發。
何謂「TLO」?「TLO」係「技術移轉機關(Technology Licensing Organization)」之簡稱,專指大學研究成果申請專利後,將該等技術移轉給企業等之機關,如同產學間的仲介角色。 日本於平成10年(西元1998年)5月6日通過「促進大學等實施技術研發成果移轉給民間企業法(簡稱大學等技術移轉促進法或TLO法)」,目的在於將大學之研究成果技轉給民間企業,促進研究成果之實用化。 在承認TLO存在之同時,日本做了以下法令之配套:依據TLO法第8條,實施特定大學技術移轉之事業期間,第1年到第10年之授權金及專利申請審查手續費用減免1/2、產業競爭力強化法第19規定,若國家委託之研發成果,歸屬於受託者時,該研發成果之移轉授權不須經國家之承認、同時大學法人法第22條允許國立大學得為出資。同時TLO法亦承認若中小企業透過TLO取得研究成果之授權時,得降低中小企業投資育成株式会社支出資要件。
日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。