歐洲理事會提出糧食安全年度策略研究議程以整合歐盟研究能量

  為因應近年來人口增長、氣候變遷對糧食安全之威脅,歐洲各國皆認為糧食安全( Food Security)議題為亟待解決之議題,應投入資源研究。為此,2012年歐洲理事會(The European Council),始提出FACCE-JPI策略研究議程(The Strategic Research Agenda of the Joint Programming Initiative on Agriculture, Food Security and Climate Change),議程主要係針對歐洲農業、糧食安全和氣候變化進行整合研究。來自21個歐洲國家代表及研究學者,提出該年度糧食安全之重要觀察議題與發展方向,欲透過此議程建立研究資源整合機制,提高歐盟因應糧食生產挑戰之研究、應對能力。

 

   歐洲理事會於去年(2012)12月提出本年度策略研究議程,內容除重申歐盟應整合糧食安全研究能量外,該議程更指出五大核心研究議題,反映歐盟對糧食安全威脅多元化之重視 ,本議程研究重點歸納如下:

 

1. 氣候變遷與糧食安全永續

2. 環境永續發展與農業精緻化

3. 糧食供需、生物多樣性與生態系統平衡

4. 氣候變遷之因應

5. 減緩氣候異常現象之有效措施

 

  本議程以核心研究為理論基礎,有效整合各會員國研究能量,更針對各別領域提出具體實踐策略,藉以強化基礎溝通平台、建立歐洲知識訊息交換能力,便利後續評估、監測機制的建立。

 

  策略議程取代傳統將糧食安全視為「國家內政」議題,而以「區域整合」層次處理,象徵歐盟糧食安全共識逐漸發展之趨勢。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 歐洲理事會提出糧食安全年度策略研究議程以整合歐盟研究能量, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5931&no=67&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
瑞士聯邦委員會發布報告推進以數位自決權創建可信賴資料空間

  瑞士聯邦委員會於2022年3月30日,發布了一份關於推進可信的「資料空間」(Data Spaces)與「數位自決權」(Digital Self-Determination)報告。此份報告旨在強調資料是數位時代下創造價值的基礎,為了更好地運用資料的潛在價值,呼籲各界採用新的資料使用概念,加強資料所有者(Data Owner)或資料控管者(Data Controller)對於資料的控制,以「數位自決權」為核心,透過科學技術與法律制度,進一步為實踐「資料共享」(Data Sharing)提供一個安全、便捷、自主、開放、公平而值得信賴的「資料空間」。   值得注意的是,透過該報告,聯邦委員會指示聯邦外交部(FDFA)與聯邦環境、運輸、能源和通訊部(DETEC)實施多項措施,以期能在2023年6月份之前,制定一部由所有利害關係人參與的可信賴資料空間操作之自願行為準則。   此外,該報告列舉出當下對於充分發揮資料潛力所存在的障礙,包括: 資料愈趨集中於大企業手中,且多基於自身目的而使用。 私人和公共服務的提供者在資料的使用上存在多種障礙,例如:資源不足、缺乏專業知識以及擔心競爭劣勢。 社會對於資料的使用態度轉趨保守,無論是擔心資料被濫用而侵犯隱私,或是缺乏資料共享的動機。   該報告更進一步指出資料流通的跨國性,因而有必要創建值得信賴且國際兼容的資料空間,為此亦須建立可信賴資料空間的國際準則,以在國際間形成法律確定性。   觀諸我國個人資料保護法第1條便明確指出,本法制定的目的不僅是為了保護個人資料以及相應之人格權與隱私權,而是更進一步欲透過個人資料管理制度的建構與落實,健全社會及商業互信,以期達成資料的合理利用、創造價值並促進公共福祉的終極目標。   關於我國的資料共享體制,現階段主要從金融機構間開始萌芽,未來如何以數位自決權為基礎,同時在充分保障資訊安全的前提下,擴及其他產業並接軌國際,有賴更多科技與法制的創造與積累、外國經驗的借鑑以及國際參與,而台灣近日以創始會員身分加入「全球跨境隱私規則論壇」(Global Cross-Border Privacy Rules Forum)即為著例。

品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵

陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

奈米技術可能對健康與環境產生危害,專家呼籲應加強檢測與管制

  幹細胞研究成果被認為將會是未來的醫療主流之一,不過由於這項研究牽涉到敏感的道德與宗教議題,政府對此一研究究竟要採何種立場,在西方國家一直爭論不斷,故最終得以立法方式獲得共識並表明政府政策態度的國家,仍為少數。即使先進如澳洲,亦遲至2002才通過第一套相關的法律-禁止人類複製法(The Prohibition of Human Cloning Act)與人類胚胎研究法(Research Involving Human Embryos Act)。   人類胚胎研究法建立了一套核准體系,對使用人工生殖技術之剩餘胚進行研究者,由國家健康及醫學研究委員會下之胚胎研究核准委員會(The Embryo Research Licensing Committee of the National Health and Medical Research Council)核發許可;該法雖允許使用人工授精的剩餘胚進行幹細胞研究,但並未特別就治療性複製部分予以規範。澳洲政府目前是以行政命令的方式,禁止醫療性複製的研究,此一禁令於2005年4月再度被延長5年。   澳洲眾議院(The House of Representatives)最近以82比62的投票比,表決通過「人類生殖性複製禁止與人類胚胎研究管理修正案」(Prohibition of Human Cloning for Reproduction and the Regulation of Human Embryo Research Amendment Bill 2006),廢止先前的禁令,開放基於醫療目的得製造胚胎進行幹細胞研究,同時明訂所製造的胚胎不得殖入於子宮內,並應在十四天內銷毀,違反本法規定者,最高可處以十五年之有期徒刑。根據規劃,本法將在相關主管機關制訂完成有關卵子捐贈及研究許可申請之相關作業細節規定後之六個月實施。

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

TOP