近年來,由於行動載具興起與數位內容蓬勃而生,導致各國於WiFi網路與行動網路皆面臨不敷使用之困境。為了增加WiFi頻寬與緩和行動網路壅塞,FCC主席Julius Genachowski於國際消費電子展(International Consumer Electronics Show)宣布將於5 Ghz頻段釋出共195 MHz之無需執照頻譜(Unlicensed Spectrum),以解決Wifi困境,並促進快速、高容量的「Gigabit Wi-fi」之發展。FCC現階段仍須與其他聯邦部門合作,協調該頻段中WiFi與其他既有用途之干擾與共用的問題。即便如此,這仍是自2003年以降,將無需執照頻譜釋出給WiFi最多的一次,且估計能將現有WiFi提升35%效率。
另一方面,對於部分電信商將推動之多項措施,如建設40,000個小型基地台(Small Cells)、以Wifi Hotspot 2.0之規格,導入商用異質網路(Hetnet),以充分利用WiFi於2.4GHZ(共83.5MHz)與5GHz(共555MHz)之頻段等,FCC主席Genachowski均表樂觀其成。上述措施可讓客戶在免額外付費、且不須複雜驗證下,藉由SIM卡自動導入WiFi,Genachowski認為此舉不僅充分利用頻譜資源、增加智慧型手機與平板銷量外,亦可改善目前行動網路壅塞之問題。
綜上所述,可窺見FCC將利用「Gigabit Wi-fi」之優勢,解決使用者於公眾頻繁往來之地點,諸如機場、市中心與大型會議場所等處,WiFi使用壅塞之問題。而此舉亦可解決家中有多個用戶、或同時使用不同載具時,造成網路緩慢之問題;至於,在行動網路上,亦有助於紓解行動數據流量,增加網路品質,促進更多APP孕育,帶動更多商機。
中國大陸於2017年8月在杭州設立網路法院(Internet court),專責處理網路購物、線上著作侵權等涉及網路爭議之案件。該法院網站設有「線上訴訟平台」,當事人在該平台使用手機號碼註冊帳號後,可遞交起訴狀和相應的證據材料,勾選所需依據的法律條文,系統將自動讀取該當事人之相關身分資訊、線上交易過程及各類表單資料。 近日該網路法院針對一線上著作權侵權案件,於審判過程中採用區塊鏈電子數據作為證據,等同認可區塊鏈電子存證之法律效力。由於區塊鏈作為去中心化的數據庫,每筆網路交易訊息皆同步於整個區塊鏈網路,因此區塊鏈有著難以竄改、刪除的特性。杭州網路法院將從第三方存證平台的資格、侵權網頁取證技術可信度及區塊鏈電子數據保存完整性進行審查,對本案電子數據之證據效力作出認定。 杭州網路法院認為,對於採用區塊鏈等技術進行存證之電子數據,應秉承開放、中立的態度進行個案分析認定,不得因為區塊鏈等技術本身屬於新型且複雜之技術而排斥或提高其認定標準。本案認可區塊鏈技術存證之法律效力,將對區塊鏈未來應用發展有很大的影響,隨著技術發展逐步成熟,產業應用的實際效果也愈發顯著。
英國發布「2017年資料保護法」草案,以符合數位時代之需求數位技術改變人們的生活,為使英國人民、企業及組織接受數位時代的變革,並確保英國做好脫離歐盟(European Union)的準備,英國數位文化媒體及運動部(Department for Digital, Culture Media & Sport)修正1998年的資料保護法(Data Protection Act 1998),於2017年9月14日,提交2017資料保護法草案(Data Protection Bill 2017)(以下簡稱:本草案)予上議院審議,以因應數位時代的來臨。 此次本草案修正的方向為: 一般資料處理(§3-26): 一般資料處理係依歐盟的一般資料保護規則(General Data Protection Regulation,簡稱GDPR)為標準,將歐盟GDPR一般資料處理的相關規範之標準制定於此次修正之資料保護法中,並確保健康、社會安全與教育資料等個人資料之安全維護。另對於個人資料的近用與刪除予以規範以強化公共政策,並維護國家安全。 執法程序(§27-79): 拜科技進步所賜,網路世界如遠弗屆,透過網路跨境傳輸、分享、蒐集資料,並非難事,因此,更需要一個強而有力且一致性的個人資料保護規範框架。警方、檢方或司法刑事機關為偵查犯罪行為,而蒐集、處理或利用個人資料,須有明確、正當、合法的執法目的,對於國際間個人資料的交流利用須依明確的程序規範並賦與相當之保護措施,確保英國退出歐盟後,仍可繼續與歐盟各成員國間聯手偵辦重大犯罪案件,以維護國際間之資訊安全。 國家安全(§80-111): 因國家安全事項不在歐盟法(EU Law)規範範圍之列,故GDPR或指令法律(Law Enforcement Directive,LED)之效力不及於各成員國對於國安全之情資蒐集。故英國本次修法參採個人資料保護公約(Convention for the Protection of Individuals with regard to Automatic Processing of Personal Data,又稱現代化公約108(modernised Convention 108))之精神,將情報單位基於維護國家安全之必要蒐集個人資料之規範,明文納入個人資料保護法之適用,以符合國際間的資訊安全規範標準。 資訊委員與執行(§112-168): 資訊委員(Information Commissioner)係指保護資訊權之公共利益、促使公務機關公開資訊與維護個人資料隱私權之獨立政府官員,得主動偵查犯罪,並得通知或教育廣泛的資料管理者,以提高資料保護之標準。繼2010年賦與資訊委員針對金融犯罪之執法權限之後,本草案亦增列意圖還原已去識別化之個人資料、禁止不當揭露個人資料兩種犯罪類型,賦與資訊委員更廣的處理權責。違反資料保護法(如不當揭露個人資料),將處以行政罰責(最高可處1,700萬英鎊/2,000萬歐元罰鍰)。 本草案除建制一個一般資料處理、執法程序及國家安全的資料保護體系外,更加強對於學術研究、金融服務及兒童保護等領域的資料保護,以因應數位時代之變革。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟委員會發布NIS 2實施條例以定義資安重大事件.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟委員會於2024年10月17日通過了歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union,下稱NIS 2)的第一個實施條例(下稱「實施條例」)。NIS 2要求企業發生重大事件(Significant incident)後24小時內,應向會員國主管機關通報,依實施條例之規定,符合以下任一條件會被視為重大事件: 1. 造成超過50萬歐元或上一年度營業額5%以上的直接財務損失。 2. 造成商業機密洩漏。 3. 已造成或能造成自然人死亡。 4. 對自然人健康已造成或能造成大量傷害。 5. 疑似惡意且未經授權的存取網路和資訊系統造成嚴重運作中斷。 6. 反覆發生的事件。 7. 符合第5條至第14條特定資訊服務的事件。 實施條例主要在於補充上述條件的第6項及第7項。第6項規定於實施條例的第4條,定義「反覆發生」的要件,包含:(1)6個月內發生兩次;(2)有相同的根本原因;(3)大致符合超過50萬歐元或年營業額5%以上的直接財務損失。第7項則在實施條例的第5條至第14條列舉特定資訊服務提供者的重大事件條件,而其他資訊服務則包含DNS(domain name system)服務、TLD(top-level domain)網域註冊管理、雲端運算服務、資料中心服務、內容交換網路、託管服務、網路商城、搜尋引擎、社群網路服務、信託服務等,對於不同服務可能造成的影響各別列舉視為重大事件的條件。 歐盟委員會發布該實施條例確立何謂重大事件,並依歐盟考量資訊安全威脅所制定的NIS 2,將公共電子通訊網路或服務、會員國等進行連結,要求會員國設置資訊安全主管機關、危機管理機構、資訊安全聯絡點等義務,建立資訊安全通報機制,確保歐盟有整體的資訊安全戰略及框架,阻止潛在危機擴散。我國於2018年已制定《資通安全事件通報及應變辦法》並建立四級資通安全事件的標準,其標準以機敏或業務資訊遭洩漏對機密性的影響、資通系統遭竄改對完整性的影響,以及資通系統運作遭中斷對可用性的影響為依據,但並未對不同類型服務有制定更精細的定義。歐盟實施條例中有關重大事件之定義,可做為我國相關主管機關參考對象,研擬更準確的資通安全事件標準。