從無線上網壅塞困境-看Wifi發展趨勢

  近年來,由於行動載具興起與數位內容蓬勃而生,導致各國於WiFi網路與行動網路皆面臨不敷使用之困境。為了增加WiFi頻寬與緩和行動網路壅塞,FCC主席Julius Genachowski於國際消費電子展(International Consumer Electronics Show)宣布將於5 Ghz頻段釋出共195 MHz之無需執照頻譜(Unlicensed Spectrum),以解決Wifi困境,並促進快速、高容量的「Gigabit Wi-fi」之發展。FCC現階段仍須與其他聯邦部門合作,協調該頻段中WiFi與其他既有用途之干擾與共用的問題。即便如此,這仍是自2003年以降,將無需執照頻譜釋出給WiFi最多的一次,且估計能將現有WiFi提升35%效率。

 

  另一方面,對於部分電信商將推動之多項措施,如建設40,000個小型基地台(Small Cells)、以Wifi Hotspot 2.0之規格,導入商用異質網路(Hetnet),以充分利用WiFi於2.4GHZ(共83.5MHz)與5GHz(共555MHz)之頻段等,FCC主席Genachowski均表樂觀其成。上述措施可讓客戶在免額外付費、且不須複雜驗證下,藉由SIM卡自動導入WiFi,Genachowski認為此舉不僅充分利用頻譜資源、增加智慧型手機與平板銷量外,亦可改善目前行動網路壅塞之問題。

 

  綜上所述,可窺見FCC將利用「Gigabit Wi-fi」之優勢,解決使用者於公眾頻繁往來之地點,諸如機場、市中心與大型會議場所等處,WiFi使用壅塞之問題。而此舉亦可解決家中有多個用戶、或同時使用不同載具時,造成網路緩慢之問題;至於,在行動網路上,亦有助於紓解行動數據流量,增加網路品質,促進更多APP孕育,帶動更多商機。

相關連結
相關附件
※ 從無線上網壅塞困境-看Wifi發展趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6014&no=0&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
英國BSI發布自駕車發展與評估控制系統指引

  英國標準協會(British Standards Institution, BSI)於2020年4月30日發布「PAS 1880:2020:自駕車控制系統開發及評估指引(PAS 1880:2020: Guidelines for developing and assessing control systems for automated vehicles)」,該文件提供一系列的準則,提供自駕車研發者於發展控制系統時可安全有效的進行布建;本文件所涵蓋之自駕車類型主要為於(研發者)所設計及規劃之特定運行範圍內(operational design domain,以下簡稱ODD)下不需人工介入即可運送旅客與貨物者。   指引中就自駕車之控制系統設計進行分類,並提出研發者應針對不同目的與重點進行說明以及相關應遵循事項,其中應包含以下項目: 任務:自駕車之任務應被定義。 ODD:自駕車之ODD應被定義並且應可涵蓋其所有執行任務之面向。 感知運作:於任務中感知運作系統執行時,自駕車應可判斷其是否遵循ODD之範圍,並可提供相關資料予決策系統。 決策:當決策系統執行時,自駕車應可實施所有為達成任務所決策規劃之活動。 控制運作:當控制運作系統執行時,自駕車應可於正常情況下控制其動作以完成任務,並可於無法執行正確行動時採取合適之措施。 監控運作:當監控運作系統執行時,於整個任務過程中,自駕車應可監控其自身之運作。 人身安全、系統安全與有效(Safe, secure and effective):自駕車應可於所有時刻皆保持運作之人身安全、系統安全性與有效性。

加拿大決定將網路中立規範適用至行動無線網路

  加拿大廣播電視及電信委員會(Canadian Radio-Television and Telecommunications Commission,CRTC)於2009年10月之Telecom Regulatory Policy CRTC 2009-657中,公佈網路流量管理架構(Internet Traffic Management Pratices,ITMPs)之決定,作為管理ISP業者進行差別待遇之依據。該管理架構是加拿大維護網路中立性原則的實踐。   當時CRTC並未決定該架構是否一併適用於行動無線網路,直至2010年7月CRTC發布Telecom Decision CRTC 2010-445,決定將該規則一併適用於行動無線網路,以解決潛在的差別待遇行為發生於行動無線資料服務。   根據2009年之管理架構,CRTC宣示了四項管理原則: 1.透明度(Transparency) ISP必須透明揭露他們所使用的ITMPs,使消費者能根據這些資訊決定服務的購買與使用。例如經濟條件的透明,使消費者能夠有符合其支付意願之選擇,使市場機制能夠正常運作。 2.創新(Innovation) 解決網路壅塞最基本的方式是透過對網路之投資,也仍是最主要的解決方案。但依靠投資並不能解決所有的問題,CRTC認為,ISP業者之ITMPs在某些時候,仍需要適當的管理措施介入。業者之ITMPs應針對明確的需求而設計,不可過度。 3.明確(Clarity) ISP業者必須確保他們所使用的ITMPs不會有不合理的歧視,也不會有不合理的優惠。CRTC所建立之ITMP的管理架構,提供一個清晰和結構化的方法,來評估既有與未來的ITMPs是否符合加拿大電信法(Telecommunications Act)第27(2)條規範。 4.競爭中立(Competitive neutrality) 對於零售服務,CRTC將採取事後管制原則,即接受消費者投訴後處理之原則,進行管制評估。而在批發服務部份,則較為嚴格。亦即,當ISP在批發服務使用了比零售服務較多的限制性ITMPs時,必須得到CRTC之批准。當ISP將ITMPs用於批發服務時,必須遵守CRTC之管理架構,不得對次級ISP(Secondary ISP)的流量造成顯著和不相稱的影響。   值CRTC並將採取行動以確保因實施ITMPs而收集之個人資訊,不被洩漏與使用至其他目的。   在本項決定公佈之後,代表加拿大提供接取網際網路的ISP,無論使用何種技術,都將適用同樣的ITMPs管理原則。在Google-Verizon於美國遊說網路中立性應不適用於行動無線網路之時,CRTC之決定可做為不同方向之參考。

美國著作權法109(a)條「第一次銷售原則」之適用原則

  美國最高法院於2010年12月13日以4:4的平手票數確立了第九巡迴上訴法院於Omega, S.A. v. Costco Wholesale Corporation案中關於著作權法109(a)條「第一次銷售原則」(first sale doctrine) 並不適用於享有美國著作權法保護之外國製造但未經授權於美國再販售之產品。   此案源於由知名瑞士鐘錶品牌Omega 於瑞士製造的手錶透過所謂「水貨」或「灰色市場」的途徑輾轉由一家名為ENE Limited的紐約公司所購得,而Costco自該公司購得手錶後於加州賣場以低於合法代理商的價格販售。然而,Omega雖對於該手錶於外國的初次販售給予授權,但並未授權該商品爾後輸入美國並由 Costco 販賣之行為。Omega乃對Costco提出侵權告訴,而此案所牽連的著作物即為手錶底面都刻有受美國著作權法所保護之「歐米茄全球設計(Omega Globe Design)」字樣。   Costco則以著作權法第109(a)條作為抗辯,主張「第一次銷售原則」之規定,亦即Omega首次於外國販售該手錶之行為,已排除其對於後續散布、進口及未經授權之銷售等行為之侵權主張。第一審法院聽取Costco 之意見,Omega 乃上訴於第九巡迴法院。上訴法院對於「第一次銷售原則」之適用較為限縮,認為先前Quality King案的判決,並未使上訴法院對於「第109(a)條,只有當該主張涉及在美國國內製造受美國著作權法保護之著作的重製物時,可以對抗第 106(3)條(公開散布權)及第602(a)條(輸入權)」之一般規定無效。換言之「第一次銷售原則」並不適用於銷售外國製造但未經授權於美國再販售的著作物或其合法重製物。而最高法院亦同意上訴法院的看法。此案的判決結果意味著作權人或合法代理商將可間接防止或控制於外國製造的真品(即水貨)未經授權輸入於美國市場。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP