歐盟個人資料保護工作小組就目的限制原則發表意見

  2013年4月2日,歐盟個人資料保護工作小組(the Article 29 Working Party,以下稱「工作小組」),就目的限制原則(purpose limitation principle)發表意見書,檢視歐盟資料保護指令(Data Protection Directive)第六條所規定的目的限制原則,包括(一)資料的蒐集必須具有特定、明確與合法之目的,以及(二)資料的處理或利用必須符合資料蒐集時之目的。

 

  另一方面,工作小組亦檢視目的限制原則對巨量資料(big data)與開放資料(open data)可能會造成的潛在衝擊:

1.就巨量資料的部分而言,工作小組界定了二個應用情境,一是分析巨量資訊,以分析辨識趨勢或資訊間的相關性,另一是直接影響個人(例如,對當事人的行為進行追蹤、分析、側寫,並據此進行廣告與行銷)。對此,工作小組認為,應給予當事人選擇的權利,另外,組織應揭露關決策標準,並且提供當事人之側寫資料。

2.關於開放資料,工作小組強調匿名化以及資料保護衝擊分析的重要性,以確保必要的安全措施。

 

  工作小組提出兩項修正意見,包括(一)個人資料保護規則(General Data Protection Regulation)草案的第五條宜針對目的限制原則為更明確之規定,以及(二)刪除個人資料保護規則草案第六條第四項之規定。

相關連結
※ 歐盟個人資料保護工作小組就目的限制原則發表意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6060&no=0&tp=1 (最後瀏覽日:2025/04/08)
引註此篇文章
你可能還會想看
美國聯邦貿易委員會插手企業資訊安全引起爭議

  美國聯邦貿易委員會(Federal Trade Commission, FTC)於2013年8月29日對位於亞特蘭大的一家小型醫療測試實驗室LabMD提出行政控訴,指控LabMD怠於以合理的保護措施保障消費者的資訊(包括醫療資訊)安全。FTC因此依據聯邦貿易委員會法(Federal Trade Commission Act, FTC Act)第5條展開調查,並要求LabMD需強化其資安防護機制(In the Matter of LabMD, Inc., a corporation, Docket No. 9357)。   根據FTC網站揭示的資訊,LabMD因為使用了點對點(Peer to Peer)資料分享軟體,讓客戶的資料暴露於資訊安全風險中;有將近10,000名客戶的醫療及其他敏感性資料因此被外洩,至少500名消費者被身份盜用。   不過,LabMD反指控FTC,認為國會並沒有授權FTC處理個人資料保護或一般企業資訊安全標準之議題,FTC的調查屬濫權,無理由擴張了聯邦貿易委員會法第5條的授權。   本案的癥結聚焦於,FTC利用了對聯邦貿易委員會法第5條「不公平或欺騙之商業行為(unfair or deceptive acts)」的文字解釋,涉嫌將其組織定位從反托拉斯法「執法者」的角色轉換到(正當商業行為)「法規與標準制訂者」的角色,逸脫了法律與判例的約束。由於FTC過去曾對許多大型科技公司(如google)提出類似的控訴,許多公司都在關注本案後續的發展。

CRTC以違反加拿大「反垃圾郵件法」對波特航空開罰

  加拿大之地區航空公司-波特航空(Porter Airlines),因違反當地「反垃圾郵件法」(Anti-Spam Law),於2015年6月29日被加拿大廣播電視及通訊委員會(Canadian Radio-television and Telecommunications Commission,簡稱CRTC)裁罰150,000美元。   2014年7月1日施行之反垃圾郵件法,係為杜絕因濫發郵件而對資料當事人造成困擾所制定。在該法中,針對寄送商業電子訊息要求需符合「獲得當事人同意」、「識別發送人之資訊」、「取消訂閱功能設計」等三項條件。然而,波特航空所寄出之商業電子訊息,卻:(1)未設計退訂機制供資料當事人選擇退訂;(2)未提供法規要求之發送人完整聯絡訊息;(3)資料當事人提出取消商業電子郵件訂閱之請求,未於法定之10個工作日內執行;(4)自2014年7月至2015年2月寄出之每一封商業電子郵件,波特航空無法證明其已獲當事人之同意而為之。   CRTC法遵暨執行部門主席Manon Bombardier認為,在過去,企業都習慣依照一般商業慣例或內部政策執行相關工作,透過此一個案,希望能對其他企業產生警示作用。企業應針對發送電子商業訊息之部分,重新檢視並審查其內部相關程序及步驟,是否確實符合當地法規要求及條件,以免類似觸法事件再度發生。

Google挑戰法國最高行政法院對被遺忘權之看法

  2016年3月法國個人資料保護主管機關「國家資訊自由委員會」(Commission Nationale de l'Informatique et des Libertés, CNIL)要求Google等搜尋引擎公司,刪除網路搜尋所出現之歐洲公民姓名。此舉參考2014年歐洲法院(European Court of Justice)對於Mario Costeja González一案(C 131/12)所作裁決,Google公司和Google西班牙公司須遵守西班牙資料保護局(Agencia Española de Protección de Datos, AEPD)要求,移除出現原告姓名之搜尋結果。Google表示不服,並上訴法國最高行政法院(Conseil d'État)。   於本案中Google提出兩點主張:第一,CNIL對於被遺忘權(right to be forgotten)適用範圍過大,聲稱所搜尋到之姓名等資訊,屬於事實或來自新聞報導和政府網站之合法公開網站資訊,認為CNIL將隔絕原本在法國可為其他人所知之合法資訊;第二,Google主張向來遵守各國個人資料保護政策,將遵照CNIL要求,但僅限刪除在法國網域內之歐洲公民姓名,無法及於全球網域,除非法國政策已為全歐盟或全球所適用,不然法國個人資料保護審查制度不能延伸至其他國家。   對於網路公民權利推廣不遺餘力之「電子前線基金會」(Electronic Frontier Foundation, EFF)認為CNIL對法國公民資料保護之特別要求,將對Google造成損害。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP