手機軟體(APP)辨識來電號碼之法律問題
科技法律研究所
102年03月25日
壹、事件摘要
我國自2005年開始推展行動電話「號碼可攜」服務,允許使用者將行動電話號碼申請移轉至另一業者。當號碼進行移轉時,為降低通話路由資訊傳遞之延遲、避免業者間轉換作業之延宕,通傳會指導各業者共同建立集中式資料庫,整合業者號碼管理資源,增進號碼可攜服務之效率。
日前有某非屬電信事業之業者,設計一款應用軟體,提供智慧型手機使用者下載、安裝後,可自行上傳通訊錄內之電話號碼,並透過電信事業之「號碼可攜集中式資料庫」,確認並辨識通訊錄內電話號碼所屬電信業者,將資訊回傳於使用者之智慧型手機。由於電話號碼屬於使用者個人資料之一環,本文以下分析「非電信事業與電信事業合作,於號碼可攜目的外,對資料庫內之資料進行蒐集、處理與利用是否違反個資法」之疑義。
貳、重點說明
「號碼可攜集中式資料庫」之設立主要目的在使不同業者間能準確的完成通訊的連接。然而,通傳會於96年10月亦有要求各電信業者設置查詢系統,提供用戶查詢欲致電之受話方是否係屬同家業者,進而協助用戶瞭解可能之通訊資費計算。換言之,通傳會認為辨識電信號碼屬於網內/外,屬於消費者規劃、理解其電信資費之權益。而目前亦有手機軟體可輔助消費者查詢相關資訊。
那麼,可否允許消費者進一步查詢致電對象所屬的業者呢?是否違反個人資料保護法的規定呢?
如前所述,通傳會認為使消費者瞭解電信號碼屬於網內/外,有助於資費理解之權益。我們更進一步說,允許查詢號碼所屬門號,不僅消費者可知悉資費之數額計算以決定是否致電,尚可決定是否使用相同電信業者之服務來打電話。我國行動電話普及率早已超過120%,有相當比例之消費者擁有二個以上之門號,若可揭露致電號碼所屬電信業者,使消費者可刻意選擇以網內門號致電,無疑具有相當實益。因此我們認為電信業者提供消費者以手機軟體查詢門號所屬業者,並不違反個資法上針對電信服務規範之「特定目的」(第133項:經營電信業務與電信加值網路業務)。一般的行動電話用戶,可透過電信業者查詢其所致電對象之門號所屬業者,則居於輔助地位的APP軟體,與用戶直接向業者查詢相比,實則無任何不同,應視為用戶之合理行為。
參、事件評析
個資法修正後,對於個人資料之保護更加的完善,但科技之發展使得個人資料之利用呈現多樣性,難以釐清某些利用行為是好是壞,然而本文基於鼓勵科技發展以及創新研發的立場,當面對某些個資利用情狀產生疑義時,應加以釐清其運用之情狀,避免在情境不明時,過度的擴張個資保護的界線,對市場發展以及消費者權益而言,並非好事。
當然另一方面而言,濫用科技便利的情形是存在的,如同2012年12月甫結束之ITU國際電信大會(WCIT2012),多國所簽署之修正電信管制規則第5B條所示,要求各國應努力採取必要措施,防止未經許可之濫發電子訊息,以減少對國際電信業務之影響。由於網路無遠弗屆,具騷擾性、浮濫發送之訊息,已從早期之垃圾電子郵件,擴及網路即時通訊軟體,不但時常造成使用者之困擾,甚至造成詐騙橫行。而這些狀況,光依靠個資法也是不足的,尚須主管機關對於濫用電信資源加以管制,從個人資料與電信資源等層面多管其下,方能維護良好之產業環境。
在2023年,多個美國法院判決拒絕採納「不可避免揭露原則(Inevitable Disclosure Doctrine)」,顯示出該原則將不再是原告於營業秘密訴訟中的一大利器,原告亦無法僅透過證明前員工持有營業秘密資訊且處於競爭狀態,便要求法院禁止該名前員工為其競爭對手工作。 在2023年2月,美國伊利諾伊州北區法院於PetroChoice v. Amherdt一案中指出,法院在適用「不可避免揭露原則」時會遏制競爭對手之間的員工流動,故將評估個案事實並嚴格限制其適用。在2023年6月,美國伊利諾伊州北區法院於Aon PLC v. Alliant Ins. Services一案中指出,根據2016年美國國會所通過的「保護營業秘密法案(Defend Trade Secrets Act, DTSA)」,該法案拒絕了「不可避免揭露原則」的適用,並禁止法院僅憑他人所知悉的資訊,阻礙其尋求新的工作,因此駁回了原告的損害賠償主張。在2023年9月,美國密蘇里州東區法院於MiTek Inc. v. McIntosh一案中同樣拒絕了「不可避免揭露原則」的適用,儘管該州的州法並未明確表達採納或拒絕該原則。 除此之外,美國聯邦法院在去年度的每一份報告意見中(Reported Opinion),皆未顯示出根據「不可避免揭露原則」申請禁令或取得救濟是合理的。換言之,大多數的美國法院都拒絕採納「不可避免揭露原則」或嚴格限制其適用。 綜上所述,儘管「不可避免揭露原則」能有效防止來自前員工不當使用其營業秘密的威脅,但其不再是未來營業秘密訴訟中的勝訴關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
美國參議院通過「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008)美國參議院以95對0票通過了「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008),該法案主要是為了增補「2007年基因資訊平等法」(The Genetic Information Nondiscrimination Act of 2007)所制定。 「2008年基因資訊平等法」的內容主要為:1.保險業者不得基於被保險人的基因資訊,拒保或是提高保費,也不得要求被保險人提供其基因資訊以供保險用途,除非符合該法的例外規定。2.雇主不得以員工的基因資訊來限制、隔離、分級員工的工作,更不可據此來剝奪員工的工作機會。但是,本法所稱的基因資訊不包含個人的性別與年齡。 在本法通過之前,美國已有41個州立法保護個人的基因資訊被保險公司使用,並且進行不平等的對待;另有32個州立法保護員工因為基因資訊,兒在工作場合受到歧視。美國並於2000年發佈行政命令(Executive Order 13145),禁止利用基因資訊歧視聯邦單位的員工;另外,「1996年醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)也針對歧視做了若干的保護,但是仍有許多漏洞,諸如沒有限制保險公司收集被保險人的基因資訊,或是沒有禁止保險公司要求被保險人進行基因檢測等,所以觀察家認為本法的通過對於個人權利保護是一項進步,但是遺傳病醫藥業者與研究者卻憂慮本法阻礙了醫療研究的發展。