美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。

 

  此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。

 

  時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

相關連結
相關附件
※ 美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6209&no=0&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

美國擬制訂私人通聯記錄保護法案

  美國國會能源及商業委員會( Energy and Commerce Committee )於 2006 年 3 月 8 日 透過匿名表決的方式,通過「防止詐欺取得通聯記錄法」草案( Prevention of Fraudulent Access to Phone Records Act ),希望透過立法的方式保障消費者之隱私權,並要求電信公司加強保護消費者之通聯記錄。由於各黨派對本法案已有共識,故預計於近期排入國會議程後,順利完成立法。   根據美國國會議員 Joe Barton 表示,美國目前對於電話通聯記錄的取得並未進行規範,任何人均可輕易的透過網路購得相關資料。由於通聯記錄中往往包含許多個人之隱私或是敏感性資料,部分不肖之徒(如身份竊盜者、非法的個人資料販賣商)會藉此故意取得個人通聯記錄,以窺探隱私,甚或以此進行犯罪行為。   有鑑於此,美國計畫透過本法案,嚴格禁止以詐騙方式取得電話記錄的情形,並賦予聯邦公平交易委員會( Federal Trade Commission )有權對違反本法規定者進行民事處罰。此外,本法案亦要求電信業者必須符合本法規定之資料安全保護的要求,若違反本法之規定而造成損害,單一案件得處以最高 30 萬元之罰鍰,若為多重案件,則得處以 10 萬元以上 300 萬元以下之罰鍰。

全球首宗BitTorrent侵權案被判定有罪

  2005 年 10 月 24 日,香港屯門法院判定一名男子利用 BT ( BitTorrent )軟體非法散布三部電影的行為構成刑事犯罪。這是全球首宗有人因使用 BT 軟體而被法院裁定罪名成立。      判案書指出,該名男子將電腦內存放之影片製作成「種子」( seed ),並在網路新聞群組上宣傳自己的「種子」,以便他人下載,由於這些「種子」下載量很大,對版權所有人造成侵害,已違反了香港法例第 528 章《版權條例》第 118 條之散布( distributes )侵權重製物罪。雖然香港法例對於“散布”一詞並未詳細界定,但香港法院解釋認為,上傳 BT 種子的行為已屬於一種散布行為。   這項判決雖存有解釋上的疑義,但是本案將同時對國際間的種子提供者、下載者以及提供 BT 軟體的公司產生重大影響。蓋 BT 本身也屬於一種 P2P 軟體,下載者在下載檔案的過程中,本身也將承擔部分上傳資料的工作,故也可能在無意中觸犯相關刑罰。此外,提供 BT 軟體的公司也可能涉及侵權,因為據今年 6 月美國最高法院裁定, P2P 軟體公司必須為其客戶的侵權行為負責。

OECD啟動全球首創的《開發先進人工智慧系統組織的報告框架》

2025年2月7日,經濟合作暨發展組織(Organization for Economic Cooperation and Development,OECD)正式啟動《開發先進人工智慧系統組織的報告框架》(Reporting Framework for the Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI Systems,簡稱G7AI風險報告框架)。 該框架之目的是具體落實《廣島進程國際行為準則》(Hiroshima Process International Code of Conduct)的11項行動,促進開發先進人工智慧系統(Advanced AI Systems)的組織建立透明度和問責制。該框架為組織提供標準化方法,使其能夠證明自身符合《廣島進程國際行為準則》的行動,並首次讓組織可以提供有關其人工智慧風險管理實踐、風險評估、事件報告等資訊。對於從事先進人工智慧開發的企業與組織而言,該框架將成為未來風險管理、透明度揭露與國際合規的重要依據。 G7 AI風險報告框架設計,對應《廣島進程國際行為準則》的11項行動,提出七個核心關注面向,具體說明組織於AI系統開發、部署與治理過程中應採取之措施: 1. 組織如何進行AI風險識別與評估; 2. 組織如何進行AI風險管理與資訊安全; 3. 組織如何進行先進AI系統的透明度報告; 4. 組織如何將AI風險管理納入治理框架; 5. 組織如何進行內容驗證與來源追溯機制; 6. 組織如何投資、研究AI安全與如何降低AI社會風險; 7. 組織如何促進AI對人類與全球的利益。 為協助G7推動《廣島進程國際行為準則》,OECD建構G7「AI風險報告框架」網路平台,鼓勵開發先進人工智慧的組織與企業於2025年4月15日前提交首份人工智慧風險報告至該平台(https://transparency.oecd.ai/),目前已有包含OpenAI等超過15家國際企業提交報告。OECD亦呼籲企業與組織每年定期更新報告,以提升全球利益相關者之間的透明度與合作。 目前雖屬自願性報告,然考量到國際監理機關對生成式AI及高風險AI 系統透明度、可問責性(Accountability)的日益關注,G7 AI風險報告框架內容可能成為未來立法與監管的參考作法之一。建議企業組織持續觀測國際AI治理政策變化,預做合規準備。

TOP