美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。

 

  此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。

 

  時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

相關連結
相關附件
※ 美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6209&no=0&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享

日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下: 1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。 2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。 3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。 4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。

日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險

日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟將立替代能源新法

  日前,歐盟執委會於2008年1月23日提交了一份關於整合性發展境內替代能源之新法制架構指令建議案,並欲藉該建議案來進一步促進生質能、太陽能與風能等相關新興能源技術之開發。該建議案還提到,歐盟所屬會員國原則上須依據於2005年當時替代能源之貢獻比例為基礎,再向上調增5.5%後來作為該會員國之替代能源預定貢獻目標。不過,考量各會員國之國情並不相同,故該建議案要求歐盟對於各會員國替代能源預定貢獻目標之制定,應採「差別化」之方式,使其可先自由調整與決定究欲採取何種比重與模式來發展各類替代能源,最後,再將所決定之能源發展策略大綱置於國家行動方案書內(National action plans, 簡稱NAP),並於2010年3月31日前提交執委會進行審核。此外,執委會也設定了一系列短期性目標,以確保能漸次穩定地朝2020年之目標前進。而有關開發生質能及永續性方面,鑑於生質燃料之發展仍具相當之爭議,故於飽受各界沉重之壓力下(如:非政府民間組織以及科學聯盟團體),未來布魯塞爾方面勢要提出一更加周嚴之永續性基準,以確保在該建議案所制定之生質燃油目標下,不會進一步導致生態系統失衡、森林濫伐、人口遷徙、糧食價格上漲以及釋放更大量CO2等問題產生。

歐盟執委會發布指引以因應《人工智慧法》「禁止的人工智慧行為」條文實施

歐盟執委會於2025年2月4日發布「關於禁止的人工智慧行為指引」(Commission Guidelines on Prohibited Artificial Intelligence Practices)(下稱「指引」)」,以因應歐盟《人工智慧法》(AI Act,下稱AIA)第5條關於「禁止的人工智慧行為」之規定。該規定自2月2日起正式實施,惟其內容僅臚列禁止行為而未深入闡釋其內涵,執委會特別制定本指引以避免產生歧義及混淆。 第5條明文禁止使用人工智慧系統進行有害行為,包括:利用潛意識技術或利用特定個人或群體之弱點進行有害操縱或欺騙行為、實施社會評分機制、進行個人犯罪風險預測、執行無特定目標之臉部影像蒐集、進行情緒識別分析、實施生物特徵分類、以及為執法目的而部署即時遠端生物特徵識別系統等。是以,指引就各禁止事項分別闡述其立法理由、禁止行為之具體內涵、構成要件、以及得以豁免適用之特定情形,並示例說明,具體詮釋條文規定。 此外,根據AIA規定,前述禁令僅適用於已在歐盟境內「投放市場」、「投入使用」或「使用」之人工智慧系統,惟對於「使用」一詞,並未予以明確定義。指引中特別闡明「使用」之定義,將其廣義解釋為涵蓋「系統投放市場或投入使用後,在其生命週期任何時刻的使用或部署。」 指引中亦指出,高風險AI系統的特定使用情境亦可能符合第5條的禁止要件,因而構成禁止行為,反之亦然。因此,AIA第5條宜與第6條關於高風險AI系統的規定交互參照應用。 AIA自通過後,如何進行條文內容解釋以及法律遵循義務成為各界持續討論之議題,本指引可提升AIA規範之明確性,有助於該法之落實。

TOP