英國寬頻競爭概況

  為了提高市場競爭,Ofcom於2006年時允許BT集團將旗下網路接取部門獨立為Openreach公司。當時,英國政府希望透過市話迴路細分化(local loop unbundling),並讓所有寬頻網路提供者得以於無差別待遇取得銅絞線網路(copper phone network)批發價,減少不公平競爭產生。在BT分拆多年後,根據Ofcom今(2013)年的統計,原細分化出租之線路從過去的12萬3千條,提升至900萬條,較過去成長70倍。銅絞線批發價公開、合理,亦促使民眾享有比過往更低的資費與更多元的服務,使社會福利成長。

 

  除此之外,市話迴路細分化不僅促進既有固網市場競爭,使消費者僅用一半的價格取得相同服務,亦間接加速業者投資意願,提高英國「高速寬頻」(superfast broadband,30M)的發展。目前,BT光纖建置速度每星期達10萬用戶可接取,輔以Ofcom2010年要求BT光纖基礎設施開放與虛擬細分化(virtual unbundling),使英國已有80家以上業者透過光纖提供網路,增加民眾選擇的權力。是故,在高速網路接取率逐步提高下,致使英國在2012年年底時,已有13%的家戶採用高速寬頻,其成長幅度亦是過往兩倍。

 

  雖然,英國高速網路發展逐步進入軌道,但亦仍有發展之隱憂。首先,有別於銅絞傳輸寬頻網路市場競爭,民眾在選擇高速寬頻網路商時,多數僅願意採用BT與Virgin,造成市場競爭失衡。此外,BT取得政府非商業區光纖建設之多數補助,這是否會造成不競爭,仍後續觀察。最後,BT雖允諾開放其於業者租用光纖線路,但已有多家ISP業者申訴BT利用「價格擠壓」的方式,增加市場優勢。

 

  英國為了在2015年能成為全歐洲寬頻發展最為優秀的國家,近期已宣布將重新檢視現有固網接取市場的管制架構,藉由兼顧市場競爭與基礎建設加速投資,促使網路能普及於英國。

相關連結
※ 英國寬頻競爭概況, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6263&no=67&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正

  德國聯邦資訊技術,電信和新媒體協會(bitkom)於2016年9月2日釋出將以歐盟新制定之一般資料保護規則(GDPR)內容為基礎,調整德國聯邦資料保護法(BDSG)之修法動向。   德國政府正在緊鑼密鼓地調整德國的資料保護立法,使之與歐盟GDPR趨於一致。已知未來將由“一般聯邦資料保護法”取代現行的聯邦法律。草案內容雖尚未定稿,但修正方向略有以下幾點:   首先,德國未來新法不僅參考GDPR、也試圖將該法與GDPR及歐盟2016年5月4日公告之歐盟資訊保護指令Directive(EU)2016/680相互連結。該指令係規範對主管機關就自然人為預防,調查,偵查等訴追刑事犯罪或執行刑事處罰目的,處理個人資料時的保護以及對資訊自由流通指令。   其次,新法將遵循GDPR的結構,並利用一些除外規定,如:在資料處理時企業應指派九人以上資料保護官(DPO)的義務。某些如通知當事人的義務規定,亦有可能在存有更高的利益前提下,限縮其履行範圍。此意味某些通知義務有可能得不適用,例如履行該義務需要過於龐大人力、資金支出、耗費過多等因素。   第三,聯邦法律將保留一些規定,如上傳給信用調查機構的條款、雇傭契約中雇用方面處理個人資料的條款,以及在公眾開放地區使用電子光學裝置監視的條款等。   最後,立法修正動向值得注意的重點尚有,(1)未來德國立法者將如何應對新的歐洲資料保護委員會(EDPB)中德國代表的地位(represe。由於EDPB將發布具有約束力的決定,針對爭議內容的決定意見,德國內部顯然應該統一意見。蓋因迄今為止的德國聯邦資料保護監察官(17個)經常提出不同的見解。此外,(2)還應該觀察聯邦資料保護監察官是否應該賦予權限,向法院提出對歐盟爭議決定或法律救濟,使案件進入德國法院,以爭執歐盟執委會所為之決定是否具備充足理由。前此,德國聯邦參議院(代表十六邦)2016年5月已要求聯邦政府引進新規定,使資訊監察保護官有請求法院救濟之權。這項源於安全港協議判決的討論,將來有可能提供德國資料保護監察官,挑戰隱私盾協議的可能性。但新法案是否會解決這一問題,這還有待觀察。   可預見在2017年9月下一屆德國聯邦議會選舉前,將通過法案。

InterDigital於美國ITC再啟關稅法第337條調查

  美國著名非專利實施實體(Non-Practicing Entity, 以下簡稱NPE)公司-InterDigital(InterDigital Technology Corporation),於2013年1月31日以三星(Samsung)、諾基亞(Nokia)、華為(Huawei)及中興(ZTE)等公司侵害其7項3G及4G之無線通訊專利(U.S. Patent No.7190966、No.7286847、No.7616970、No.7941151、No.7706830、No.78009636、No.7502406)為由,向美國國際貿委員會(United States International Trade Commission, 以下簡稱USITC)提請依美國關稅法第337條啟動專利侵權調查(案號:337-TA-868)   InterDigital成立於1972年,主要研發領域聚焦於「無線語音及數據通訊系統」,所持有的專利組合涵蓋了現今2G、3G、4G及IEEE 802等相關主流技術。依據PatentFreedom於2013年1月的統計資料,InterDigital共持有2961項美國有效專利,於全球NPE中排名第四。作為典型的NPE,InterDigital本身並不自行使用所擁有的專利,而係以「授權予手持裝置製造商、半導體製造公司或其他設備製造商」作為主要商業營運模式。   因此,為確保專利能發揮最大運用效益,InterDigital會主動搜尋市場中潛在的侵權人,並透過法律訴訟手段,促使其支付授權金。其中,USITC的「關稅法第337條」調查程序,即為重要的策略手段之一,因其所需的審理時間較一般法院的民事訴訟程序為短,且於確認存在專利權侵害之情事後,其裁決效力可透過禁制令(Exclusion Order)或暫停及停止令(Cease And Desist Order)直接對被控侵權人的產品進口及銷售造成重大影響,故在為數不少的案件中,被告往往會選擇給付授權金以求停止關稅法337條之調查程序。   由於本案中遭調查的產品幾乎涵蓋了各廠商於市場中的主要產品(例如三星的Galaxy Note、Tab及S系列、Nokia Lumia系列、中興的4G移動熱點設備、華為的Activa 4G手機等),故引起了產業界的高度關注。針對本案,USITC已於2月4日宣布啟動為期16個月的侵權調查,並定於2014年6月4日前完成所有調查,其後續調查結果及本案如何發展,值得持續觀察。

瑞士洛桑管理學院公布《2025年IMD世界競爭力年報》

瑞士洛桑管理學院(International Institute for Management Development, IMD)於2025年6月17日發布《2025年IMD世界競爭力年報》(IMD World Competitiveness Yearbook),針對全球69個國家與地區,從「經濟表現」、「政府效能」、「企業效能」及「基礎建設」四大面向進行綜合評比,瑞士、新加坡與香港分列前三,展現其制度穩定性與政策應變能力的優勢。 排名第一的瑞士,擁有強健的制度架構,且其「政府效能」與「基礎建設」表現卓越,然瑞士在「經濟表現」與「企業效能」表現略有下滑,主要與公共採購制度的透明度相關,當地企業反映,公共部門合約對外國投標者開放程度不足,限制市場競爭並影響外資參與。 新加坡「經濟表現」亮眼,使其整體競爭力維持在第二名,然因企業外移嚴重,其「企業效能」由去年的第二名滑落至第八,對未來競爭力構成威脅。 香港由第五名升至第三,四大面向皆有明顯進展,顯示其持續改善投資環境;且香港在企業效能方面表現出色,有效強化其作為全球金融中心的地位。 我國排名第六,較去年上升兩名,展現整體競爭力持續提升。四大面向表現均衡,尤以「經濟表現」與「企業效能」成績亮眼,顯示我國出口動能穩定,企業具備良好轉型能力與國際競爭力,科技產業持續發揮關鍵影響力。「政府效能」維持穩定,財政與稅制制度具備競爭優勢,對營商環境有正面助益。惟在「基礎建設」與社會面向方面,仍面臨人口結構變遷、能源轉型與永續發展等挑戰,需持續強化相關制度與政策配套,以確保長期發展動能。 總體而言,競爭力除經濟與治理外,亦受社會及供應鏈變動影響。未來各國應持續強化治理與創新能力;兼顧社會包容性與產業永續發展,以維持長期競爭力。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP