英國電信管制機關Ofocm於2013年8月宣布了新的措施,目的在幫助消費者轉換其電話和寬頻服務業者時,更加輕鬆與方便。
當消費者計畫轉換其寬頻服務業者時,時常面臨著必須許多不同業者的手續、流程,包含轉換與被轉換的業者,以及中介服務的業者。如此複雜的轉換過程造成混亂,也容易讓消費者認為轉換服務業者是很麻煩的,某種程度上阻礙消費者選擇較佳服務業者的機會。
Ofcom的研究指出,在轉換業者的過程中,最大的阻礙在於,消費者有時覺得不好意思向目前提供服務的業者提出轉換的申請,在這樣的過程中,現在的業者有很多的主導權,例如對於轉換過程的遲延或服務的中斷,均導致消費者承受不必要的拖累。
為了解決這些問題,Ofcom決定,未來當消費者計畫轉換服務業者時,只需要遵循一個單一的轉換程序,由新的服務業者代表消費者進行此一過程。
這個「由遷入供應商主導(gaining provider led,GPL)」的過程中,已廣泛的是用於電話和寬頻服務之轉換程序,消費者將不再需要聯繫他們現有的服務業者、收到一個編號,以轉換業者。
Ofcom還設置了額外的措施,以幫助防止消費者在轉換的過程中遭遇服務的中斷、或是有未經消費者同意的轉換。
一個明確的和改進的切換過程中,以幫助消費者。
Ofcom在既有GPL程序的基礎上進行改善,制訂單一的流程,強化流程的監督,為消費者提供增值收益。
根據Ofcom初步制訂的單一轉換流程,服務業者必須遵守以下指示:
‧留存每一位消費者轉換服務的相關同意記錄,以保護消費者在不知情之下,被轉換到不同的業者;
‧防止消費者轉換時出現服務的空窗期,特別是電話和寬頻服務的轉換;
‧給消費者提供關於業者服務品質的資訊,如提前終止服務時,可能需負擔的額外費用變化,使消費者可以做出明智的決定。
Ofcom計畫於2014年初將細部程序制訂並執行,並可能提出下一階段的工作,涵蓋兩個關鍵領域:
‧持續與業者溝通,確保消費者得到更好的保護;
‧進一步改進電話、不同類型的寬頻服務、不同類型的網路之間的轉換(例如Cable網路)用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
何謂「“十三五”技術市場發展專項規劃」?中國大陸發布「“十三五”技術市場發展專項規劃」,在十二五時期,中國大陸不斷的推動技術市場的進步與發展,在政策上,不斷的更新法規,包括修訂《中國大陸促進科技成果轉化法》,進而促使《中國大陸促進科技成果轉化法》、《中國大陸科技進步法》、《中國大陸合同法》和地方技術市場法規共同規範了對中國大陸技術市場的保障。 在十三五時期,中國大陸提出六項主要任務,分述如下:(一)使保障技術市場的法規更為完整;(二)完整技術市場體系的建構;(三)加速促進成果轉化的步調;(四)利用技術平台,使創新創意相互流動;(五)提高技術市場人才的專業能力;(六)合理化的監督管理機制。
歐盟創新採購機制觀測 美國北卡羅萊納州將虛擬貨幣交易所納入貨幣傳輸法的適用對象為迎接數位貨幣此種新興產業所帶來的挑戰,在企業經營者與立法者的同意下,北卡羅萊納州於2016年6月通過H.B. 289法案,擴大該州貨幣傳輸法(Money Transmitters Act )的適用對象,將虛擬貨幣交易所納為貨幣移轉服務商,其須向主管機關申請特定執照,並繳納保證金,立法者更於2017年追加繳納保險金的規定,以避免資安危機。法案內對虛擬貨幣的定義為,一種能表彰價值的數字,可經由電子交易並具有交易媒介(medium of exchange)、計價單位(unit of account)和價值儲存(store of value)等功能,但虛擬貨幣並不是美國政府所承認的法定貨幣(legal tender status)。 又虛擬貨幣的經營業務,範圍包含建立於區塊鏈的虛擬貨幣活動,但排除挖礦者、使用區塊鏈技術的軟體公司,像是智能合約平台(smart contract platforms)、智能資產(smart property)等適用對象。申請貨幣移轉業務執照,須繳交1500美金的費用,再加上每年至少5000美元的評估費用。此外,為保障使用者所要求的保證金部分,貨幣移轉金額若低於100萬美元者,必須提出15萬美元作為擔保,若超出100萬美元者,則須提出更高的保證金。此項法案的出爐強化了法律的明確性,為該州經營虛擬貨幣的業者,提供一項可預見的規範,該法案未來是否能成為其他州成立新法的指標,仍有待後續發展。