尹官石(Youn, Kwan-Suk)等11位韓國國會議員於2013年7月16日提出著作權法修正案,修法內容包括「導入著作權專門士及資格考試等制度」、「增訂著作權保護院設立之法源依據及相關業務規定」、「著作權保護院之審議委員會之組成」、「審議及發出糾正命令之主體變更為著作權保護院」。
韓國國會議員尹官石指出,雖然韓國著作權產業規模逐漸擴大,但據統計,著作權專業人才僅1萬3533位,專業人才明顯仍然不足。再者,著作權小規模訴訟也不斷增加。另外,現在雖有營運核發著作權相關資格證書業務之民間業者,但卻存在廣告誇大、課程內容不實,缺乏事後管理機制等問題,而造成市場混亂。為解決上述問題,韓國著作權法擬導入著作權專業人員之國家資格證照制度,希望藉以有效培育著作權專業人才,讓著作權產業得以健全發展。
另一方面,影視內容和電腦軟體為韓國著作權產業之核心,其所創造之附加價值及就業機會均呈現增加的趨勢,但相對來說,韓國音樂、電影、電視劇等內容常被非法重製,而這樣的非法重製行為造成3兆9758億韓圜之生產利益損失,減少3萬6千個就業機會。對此,為更有效推動著作權保護,並使著作權保護業務推動一元化,藉以促進文化內容產業發展,著作權法擬修法整併現有的著作權保護中心和韓國著作權委員會之功能,改設著作權保護院,以統合著作權保護業務。
在此一著作權法修正案之後,韓國文化體育觀光部及其它議員亦對其它著作權議題,如擴大著作權保護及合理使用範圍等,提出修正案,因此後續韓國著作權法的修法動態,值得持續關注。
南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。
德國針對企業資訊安全及資料保護相關法律提出建議文件德國經濟及能源部於2018年3月8日為企業資訊安全保護措施建議及資料保護、資料所有權相關法規提出建議文件,協助中小企業提升對於組織及特別領域中的資安風險之意識,並進一步採取有效防護檢測,包括基本安全防護措施、組織資安維護、及法規,並同時宣導德國資料保護法中對於資安保護的法定要求。 資通訊安全及其法規係為企業進行數位化時,涉及確保法的安定性(Rechtssicherheit)之議題。加強資安保護,除可增進銷售及生產力,並使商業貿易間有更大的透明度和靈活性,和創造新的合作信賴關係。因此相關網路內容服務提供商應符合法律要求,提供相關服務,並使共享資料得到完善的保護。例如:應如何保護處理後的資料?如何執行刪除個人資料權利?各方如何保護營業秘密?如果資料遺失,誰應承擔責任?唯有釐清上述相關等問題時,方能建立必要的信任。而在德國聯邦資料保護法,歐盟一般個人資料保護法、歐盟網路與資訊安全指令等規範及相關法律原則,係為數位創新企業執行資安基礎工作重要法律框架。但是,由於數位化的發展,新的法律問題不斷出現,目前的法律框架尚未全面解決。例如,機器是否可以處理第三方資料並刪除或保存?或是誰可擁有機器協作所產生的資料?因此,未來勢必應針對相關問題進行討論及規範。鑑於日益網路化和自動運作的生產設備,工業4.0的IT法律問題變得複雜。一方面,需要解決中、大型企業的營業祕密,資料所有權和責任主題之實際問題,以促進相關數位化創新。另一方面,為了能夠推導出現實的法律規範,需要更多具體實施案例討論。 據研究顯示,企業家對產品責任問題,人工智慧使用,外包IT解決方案,及雲端計算等核心問題的新法規以顯示出極大的興趣,並進一步列入既有或規劃中研究項目。未來,政府將協助為所有公司在安全框架下展開數位計畫合作的機會,並充分利用網路的潛力,而中小企業4.0能力中心也將為中小型公司在數位化目標上提供IT法問題方面的支持。
美國最高法院認定警方向通信業者取得嫌犯之通信之基地台位址資訊須持有搜索票繼2012年最高法院認為警方在無搜索令的情況下,以GPS追蹤裝置查探犯罪嫌疑人之位置資訊違反憲法第四修正案。最高法院於2017年6月5日,認為警方未持搜索票,而向電信公司取得犯罪嫌疑人過去127天共計12,898筆之行動通信基地台位置資訊(cell-site data)之行為,違反憲法第四修正案。 由於個人利用行動通訊服務時,必須透過基地台進行通訊,因而可藉由該基地台位置,得知每個人所在之區域位置,而此一通訊紀錄過去被電信公司視為一般的商業資訊,因為得知通訊基地台的位置資訊,無法直接得知個人所在的精準位置,僅能得知其概略所在地區。 因此,犯罪調查機關基於1979年 Smith v. Maryland案所建立之原則,即只要該個人資訊屬於企業的一般商業紀錄(normal business record),警方可以在無搜索令的情況下,向企業取得個人資訊, 此一原則又稱為第三方法則(third-party doctrine)。過去在地方法院或上訴法院的審理中,法院對此多持正面見解,認為只要該資料與進行中之犯罪偵查活動有實質關聯(relevant and material to an ongoing criminal investigation),警方即可向業者取得。大法官Sonia Sotomayor早在前述2012年GPS追蹤裝置案的協同意見書中表示,第三方法則不應適用在數位時代,例如用戶撥電話給客服人員,或以電子郵件回覆網路購物的賣方等,無數的日常活動已經大量的向第三方揭露許多資訊。 在數位時代,大量的個人資訊以電磁紀錄的形式掌握在第三方手中,本案最高法院的見解,將會對美國的犯罪調查機關在未持搜索令的情況下,更慎重的判斷向業者取得個人資訊做為犯罪偵查使用時,是否與憲法第四修正案有所違背。
日本發布美國數位政策現狀報告,呼籲推動AI發展的同時,亦應注重資料安全性日本獨立行政法人情報處理推進機構(下稱IPA)於2025年10月發布美國第二次川普政權數位政策現狀報告(下稱現狀報告),內文聚焦於美國政權輪換後數位政策之變動與解讀,同時提及在推動AI發展的同時,亦應注重其安全性。 日本觀測美國數位政策的現狀報告指出,隨著社會數位化程度日益增加,除了雲端數位資料的累積,以及提升對於AI的依賴程度外,亦會造成釣魚信件難以識別,透過可自動生成程式碼的惡意攻擊型AI進行攻擊行為等AI濫用之風險。 準此,美國為確保AI與資料的安全性,並維持其領域之競爭優勢,於2025年7月23日發布AI行動計畫,並提出三大方針,包括加速AI創新、建構AI基礎設施,以及透過國際性的AI外交與安全保障發揮領導能力。此外,內文亦提及為確保競爭優勢,需要建立作為AI發展基礎的科學資料集,並建置資料中心,同時確保其具備高度安全性,以避免AI使用者輸入AI之資料遭到竄改或外洩。 此外,現狀報告內文提及日本企業Softbank與OnenAI、Oracle等公司共同參與規模達5000億美元的Stargate計畫,並已於德州著手建設AI資料中心,顯示日本在美國的AI基礎建設中扮演重要角色並佔有一席之地。然而,內文亦指出美國數位政策具備不透明性而有潛在風險,須持續留意與關注。 我國企業如欲深耕AI領域,並透過AI進行技術研發,可由建立科學資料集開始著手,以作為訓練AI模型的基礎,以達到運用AI輔助及縮短研發週期、減少研發過程中的試錯成本等效益。此外,為確保安全性,科學資料集建置過程中所需之數位資料,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,建立貫穿數位資料生命週期之資料治理機制。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)