歐盟提出「一般資料保護規章」(草案)並審議,以因應未來聯網環境趨勢

  為因應近來智慧聯網(IoT)、巨量資料及雲端運算發展趨勢,為強化線上隱私權利及促進歐盟數位經濟的發展,歐盟執委會於2012年1月25日對於資料保護指令提出新的規章草案:「保護個人有關個人資料處理及自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation)),以取代並廢除(repealed)原有「個人資料保護指令」規範,並修改(amend)「隱私與電子通訊指令」,預計在2013年6月進入歐洲議會、理事會及執委會的三方協商,若順利將在2014年通過,並在2016年生效。

  「一般資料保護規章」(草案)中對於聯網環境及智慧化設備運行之因應,重要規範內容有(1)追蹤(tracking)與特徵分析(profiling):訂定第20條「特徵分析措施」(Measures based on profiling)規範條文,保障每個當事人皆有主張不被採取特徵分析措施(如個人傾向、工作表現、財務狀況、位址、健康、個人喜好、可信度)而致產生法律效果或顯著影響該個人的權利(2)被遺忘及刪除權(right to be forgotten and to erasure):訂定第17條,創設新的權利「被遺忘及刪除權」,用以幫助民眾處理線上資料,當其不希望自己的資料被利用且無合法理由保留時,資料將被刪除(3)資料可攜權利(the right to data portability):訂定第18條,當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料,更容易自不同服務提供者間移轉個人資料。(4)當事人的同意要件:第4條第8款明定,不論何種資料處理情況時所需的同意,增列必須是明確(explicitly)同意之要件(5)「設計階段納入隱私考量」(privacy by design)、「預設隱私設定」(privacy by default):訂定第30條,要求資料控制者及處理者應實行適當的技術性、組織性措施,並考量科技發展水準,制定特定領域及特定資料處理情況的標準及條件,並且資料保護將會從產品及服務最初發展、設計時就考量隱私問題應對「設計階段納入隱私考量」及「預設隱私設定」提出標準及條件。

  歐盟此次對於「一般資料保護規章」(草案)的修法進程,以及世界各重要國家的立場及反應態度,均值得後續密切觀察研析。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟提出「一般資料保護規章」(草案)並審議,以因應未來聯網環境趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6368&no=67&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
美國「刑事鑑識演算法草案」

  美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。

日本監理沙盒制度推動趨勢—簡介生產性向上特別措施法草案與產業競爭力強化法修法內容

  我國自2017年12月通過《金融科技發展與創新實驗條例》建立金融監理沙盒制度後,各界時有呼籲其他非金融領域亦有沙盒制度之需要。觀察國際上目前於金融產業以外採取類似沙盒制度之國家,當以日本為代表,且日本相關制度亦為我國《中小企業發展條例》修法時之參考對象。   本文針對日本近期提出之《生產性向上特別措施法》(草案)以及日本《產業競爭力強化法》新近之修法等兩項日本近來有關沙盒制度之修法為觀察對象,針對其整體立(修)法背景、《產業競爭力強化法》中灰色地帶解消制度及企業實證特例制度修正重點以及《生產性向上特別措施法》(草案)中「專案型沙盒」之制度內涵進行整理,並比較企業實證特例制度及專案刑沙盒兩者制度上之異同。   本文最後發現,日本之沙盒制度設計上確實符合其減少事前管制、強調事後確認與評估、建立風險控管制度、課與主管機關提供資訊與建議之義務以及強化業者與主管機關聯繫等目標。同時,本文認為日本沙盒制度中有兩項制度特色值得我國關注及參考。第一,日本成立了包含外部專家的「評價委員會」,協助政府單位了解創新事業之內容及法規制度之觀察。第二,日本未來將提高實證制度之協調層級,在日本內閣府下設立單一窗口協助申請者決定其可適用之實證制度。

「巨量資料應用」

  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。   在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

美國衛生及公共服務部「曲速行動」透過公私合作夥伴加速COVID-19疫苗研發

  美國衛生及公共服務部(Department of Health and Human Services, HHS),於2020年6月16日提出「曲速行動(Operation Warp Speed)」,目標是在2021年1月前,提供3億劑具安全有效性的COVID-19疫苗,給所有美國人民使用。參與行動的政府夥伴,包括國家衛生研究院(National Institutes of Health, NIH)、食品藥品監督管理局(U.S. Food and Drug Administration, FDA)、疾病預防管制中心(Centers for Disease Control and Prevention);與多家製藥公司包含嬌生、默克、輝瑞、Moderna、AstraZeneca等,簽訂研究製造及保證收購疫苗的競爭型補助協議,直接由政府需求主導疫苗藥劑的研發、生產與銷售,藉此滿足國家防疫的戰略需求。   曲速行動為政府部門及公私夥伴間的合作計畫,依據美國國會通過《新冠病毒援助、救濟和經濟安全法》(Coronavirus Aid, Relief, and Economic Security, CARES Act),計畫補助資金達100億美元,其中超過65億美元用於生物醫學高階研究和發展管理局(Biomedical Advanced Research and Development Authority, BARDA),30億美元用於NIH研究。公私夥伴合作項目包括:「加速研發新冠病毒藥物及疫苗計畫」(Accelerating COVID-19 Therapeutic Interventions and Vaccines, ACTIV)、「快速診斷技術計畫」(Rapid Acceleration of Diagnostics Tech program, RADx)等。   曲速行動從100多種疫苗中先行選出14種候選疫苗,由美國政府補助,進行早期臨床實驗,再分次篩選出最具潛力者,進行大規模檢測。透過公私夥伴合作,不僅成功帶動製藥廠商積極研發,也協助候選廠商間彼此競爭、提升製藥能力,進一步反饋研究經驗給最終產出的疫苗成果。

TOP