歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後

  歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。

  根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。

相關連結
相關附件
※ 歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6383&no=65&tp=1 (最後瀏覽日:2025/06/07)
引註此篇文章
你可能還會想看
美國聯邦通訊委員會新通過的隱私規範

  這是客戶的資訊,該資訊如何被使用應為客戶的選擇。」於此一理念下,美國聯邦通訊委員會(Federal Communication Commission,FCC)於2016年10月27日通過了寬頻客戶隱私規定(Broadband Consumer Privacy Rules),該規定要求寬頻網路服務提供者(broadband Internet Service Providers,ISPs)應保護其客戶之隱私,該新通過的隱私規範非禁止使用及分享客戶的資訊,而係給予客戶有更多的選擇去決定自身的資訊該如何被分享及使用。以下簡介規範內容: 一、規範對象:寬頻網路服務提供者及其他電信營運商,例如Comcast、Verizon、AT&T等。規範對象未包含聯邦貿易委員會(Federal Trade Commission,FTC)所管轄的隱私保護措施下的網站或其他邊緣服務商(edge service),例如Google、Facebook、Amazon等。亦未規範寬頻網路服務提供者營運的社交媒體網站或政府監管、加密,執法等問題。 二、 主要規範內容:將ISP所蒐集得使用及分享的資訊分為三類,建立客戶同意要件,分類如下。 (一)敏感性資訊須事前取得客戶肯定地選擇同意加入(opt-in),才得為使用及分享。敏感性資訊包含精確的地理位置、金融資訊、健康資訊、孩童資訊、社會安全碼、網站瀏覽紀錄、app使用紀錄及通訊內容。 (二)非敏感性資訊,例如電子郵件地址或服務層資訊,得使用及分享,惟當客戶選擇退出(opt-out)則不得使用及分享。 (三)同意要件之例外。除了在建立客戶與ISP關係外,針對特定目的將會被推定為已取得客戶同意,包含寬頻服務之提供或針對服 三、 其他重要規範內容:清楚告知客戶收集的資訊、將如何使用、向誰分享;實施合理的資料安全準則;保密性違反之通知。   然而針對FCC是否具有相關管制權限,質疑聲浪仍存於本次規範之通過。亦有認為該規範與FTC的管制同時運行將形成疊床架屋,造成社會大眾之混淆。並且該規範未能真實反映網路生態,未將網路公司或社交網站公司列入管制對象,無法真正保護客戶隱私。

FDA允許第一個可以直接對消費者進行個人基因遺傳的健康風險服務測試法-GHR

  「美國食品和藥物管理局(FDA)」於2017年4月6日准許「23and me個人基因遺傳健康風險服務測試(簡稱GHR)」進行行銷,FDA要求該測試方法可以一定準確度檢測出十種疾病及可能條件。GHR是第一個被美國食品藥物管理局授權允許直接對消費者進行測試並提供個人遺傳傾向及醫療疾病條件資訊給消費者的測試。   GHR試圖提供遺傳風險資訊給消費者,但這個測試無法確定人們發展成疾病或發病條件的總體風險,因為除了某些遺傳變體的存在,還有很多因素會影響健康條件的發展,包含環境以及生活方式的因素,因此該檢測可能可以幫助人們做選擇生活方式的決定或告知消費者專業的健康照護。   23and me的GHR測試是運作自隔離唾液樣品中的DNA,此檢測被測試超過500000個遺傳變體,其檢測關於發展成以下十種疾病或發病條件增加風險的存在與否,包括帕金森氏症(Parkinson’s disease)、阿茲海默症(Late-onset Alzheimer’s disease)、自體免疫問題(Celiac disease)、α-1抗胰蛋白酶缺乏症、早發性原發性肌張力障礙(early-onset primary dystomia)、因子XI缺乏症(factor XI deficiency)、高血病1型(gaucher disease type1)、葡萄糖6-磷酸脫氫酶缺乏症(glucose 6- phosphate dehydrogenase defiency)、遺傳性血色素沉著症(hereditary hemochromatosis)、遺傳性血栓形成(hereditary thrombophilia)。   此外,FDA更要求所有DTC測試在醫療用途目的上之使用必需要能跟消費者溝通,使消費者可以充分了解該測試法後選用。其中一個研究顯示,23andMe的GHR測試的相關資訊是容易被理解的,有90%的人能夠了解報告中所呈現的資訊。

澳洲發布國家身分韌性戰略

所謂「身分」(Identity)是「特徵」(characteristics)或「屬性」(attributes)的組合,可讓個人在特定環境中與其他人區分開來,以證明自己的身分,例如出生日期和地點、臉部圖像等。澳洲政府有鑑於數位經濟的快速成長,線上身分驗證比實體身分驗證更為頻繁,促使犯罪人竊取和濫用身分資訊與資格證明(credentials),使得越來越多人面臨網路犯罪和詐欺的風險,澳洲在2021年時更因為身分竊盜事件橫行,造成超過18億美元的經濟損失。 為此,澳洲資料和數位部長會議(Data and Digital Ministers Meeting, DDMM)於2023年6月23日發布「國家身分韌性戰略」(National Strategy for Identity Resilience),以取代2012年國家身分安全戰略(National Identity Security Strategy),宣示澳洲政府加強身分基礎設施和對身分竊盜的韌性與復原力,推動澳洲各州、領地(territory)和聯邦(Commonwealth)採用全國一致的身分韌性方法,使得個人身分難以被竊取,縱然不幸遭竊取,受害人亦能夠輕易自身分犯罪中恢復身分。 該戰略由十項原則組成,包含:(1)無縫接軌的聯邦、州和領地數位身分系統;(2)具包容性的身分辨識機制;(3)個人與公私部門都有各自角色;(4)制定國家實體與數位資格證明標準;(5)建立生物辨識和經同意的身分驗證;(6)便利個人跨機構更新身分資訊;(7)更少的資料蒐集與保存;(8)明確的資料分享協議;(9)資格證明的一致撤銷和重新簽發;(10)明確的問責與責任。搭配短、中、長期的實施規畫,循序漸進地加強與一制化澳洲跨司法管轄區的身分安全管理機制。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP