歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。
根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。
日本首相官邸之「日本經濟再生本部」於2016年5月19日召開第27次「產業競爭力會議」,並於該會議上提出「日本再興戰略2016(草案)」進行討論。再興戰略以實現「第四次工業革命」為主軸,透過活用IoT、巨量資料、人工智慧(AI)、機器人等技術,目標在2020年創造出30兆日圓的市場附加價值。為了推動相關政策,今年夏天將會成立具備統整指揮機能之「第四次工業革命官民會議」,該會議下並設置「人工智慧技術戰略會議」、「第四次工業革命 人才育成推動會議(暫定名稱)」,以及「機器人革命實現會議」。 「日本再興戰略2016(草案)」,特別對於製造業相關之議題提出討論。再興戰略指出,日本相較他國,雖然在網路空間的「虛擬資料(バーチャルデータ)」平台方面發展較晚,然而在健康資料、交通資料、工廠設備運轉等「即時資料(リアルデータ)」領域有潛在的優勢,因此為了讓日本的企業超越目前的框架,將以建構取得「即時資料」之平台為目標。綜整「日本再興戰略2016(草案)」具體重要政策方面如述,包括: (1)日本政府認為,第四次工業革命普及的關鍵,在於根據中小企業的現場需求,導入IT及機器人等技術,因此將請機器人專家支援,在兩年內將技術導入1萬家以上的企業。 (2)人工智慧的研發係屬第四次工業革命的基礎技術,因此要建構提供AI軟體模組工具,以及推動標準化的完善環境,並於今年內提出研發及產業化的具體施政內容,並留意開發人工智慧的透明性、控制可能性等原則及國際動向。 (3)關於產業活用區塊鏈技術(Block chain)、整備制度促進資料流通等議題,預計於今年秋天提出對應方針。 (4)於「機器人革命倡議協議會」檢討製造業之商業模式改革、與德國共同提案國際標準化及先進案例。 (5)於2020年以前,運用傳感器蒐集資料,創造50件以上,工廠和總公司間,企業和企業間等超越組織框架的先進案例,並提出國際標準。 (6)進行智慧工廠實證,建構具備AI技術的自動化模組以及智慧的產業保全。此外,為超越既有企業間的框架,將於機器設備進行資料共有及活用的實證,並根據實證結果修正相關制度。 (7)整備促進資料利用的環境,特別著重能夠蒐集、分析的資料平台,形成健全的資料流通市場。因此,為釐清彼此的權利義務關係,今年內個人資料保護委員會將提出相關交易指針。 (8)強化智財紛爭處理系統,將徵詢產業界的意見,於今年提出法制改革的結論。 (9)強化中小企業的智財戰略以及必要審查體制,協助其申請及活用專利權,預計明年度開始擴大支援業務,負責機關為獨立行政法人工業所有權資料‧研修館(INPIT)。
新加坡「創新者智財保險計畫」新加坡智慧財產局(IPOS)為了降低新創業者面臨智慧財產權爭議的風險與訴訟成本,於2019年6月13日與民間保險業者Lloyd’s Asia、Antares Underwriting Asia公司共同宣布「創新者智慧財產權保險計畫」(Intellectual Property Insurance Initiative for Innovators,以下簡稱IPIII),IPIII針對擁有新加坡專利、商標或是設計等智慧財產權的企業或創作者,以優惠(額外20%折扣)的保險費率提供其在一年或約定期間內,就被保險人之智財權及相關授權權利,負擔其所發生主張或被訴侵權糾紛之高額費用(不限於訴訟,亦包含仲裁與調解),將大幅降低新創業者進入國際市場所經常面臨的法律成本。 隨著無形資產在全球經濟價值中的比重與日俱增,新興的商業模式所可能面臨的智財相關風險也益發不容忽視,企業透過智財保險以維護其商業利益可說是當務之急。為有形資產如廠房、土地或設備投保可說是當代基本的商業常識,相比之下企業對存在更高風險的無形資產保險卻顯然不足,因此IPOS與民間保險業者合作推出IPIII,IPOS表示智慧財產權要被行使才有意義,希望藉由IPIII大幅降低業者行使智慧財產權的法律成本,及時提供新創業者進軍國際市場面臨智慧財產糾紛時能獲得更全面的保障,並藉由對智慧財產權更全面的保障制度以鞏固新加坡作為國際金融與法律中心的地位。
第三方支付法制問題研析 合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。