美國加州於2019年9月通過AB-5法案(Assembly Bill No. 5),預計於2020年1月正式施行,本法目的在於強化零工經濟下非典型勞務提供者(如平台外送員)的權益保護,於加州現行勞動法令之基礎上,增訂關於各類勞務提供者之特別規定。 依本法主要規範,係推定替雇主(hirer)提供服務的工作者為僱傭契約關係下之僱員(employee),就最低工資、失業保險、勞災、醫療保險等面向,業者應對這些工作者提供等同受僱人之相關權益及保障;若要被例外認定為非成立僱傭關係之獨立承包商,則必須滿足不受公司於工作方面的控制指示、從事與公司通常業務範圍無關之業務、以及有實質接案自由等三要件,並要求業者應以上列標準判定其勞務提供者為僱員或獨立承包商,同時需於例外認定為獨立承包商時提出相關證明。 同時,本法亦考量到施行後其效力對既有營業形態之衝擊,分別採取以下措施: 針對例如派報員、商業捕撈(commercial fishermen)等業別,於本法正式施行後一定期間內,豁免前述列舉之特定領域勞務提供者適用本法來認定其與業者間的契約關係。亦即,在法案生效後的短期內,特定業者暫時不需適用該法所定要件來檢視與勞務提供者間之契約關係,避免本法貿然實施可能導致其無法經營日常業務的困境。 對於醫療保健專業人員、持有牌照之律師、建築師、會計師、證券經紀商等法明文列舉之特定職業,排除適用本法判定勞動關係的特別規定,而非暫時豁免適用。
Trader Joe’s v.s. Pirate Joe’s 超市品牌商標之爭居住於溫哥華的加拿大人Michael Hallatt(以下簡稱Hallatt),在加拿大設立了一家超市名為”Pirate Joe’s”,其貨品來源主要來自美國知名大型超商Trader Joe’s的產品,每年往來美國、加拿大平均花費近35萬美元購買Trader Joe’s的產品,包含有機沾醬、巧克力餅乾、裹著牛奶巧克力的洋芋片等熱門產品。 自稱為Trader Joe’s的最忠實客戶Hallatt,卻於今年(2013)被Trader Joe’s於美國境內提出訴訟,Trader Joe’s主張Hallatt經營Pirate Joe’s的方式侵害其商標權(trademark infringement)、不實廣告(false advertising)、使消費者誤認Pirate Joe’s有經Trader Joe’s授權或認同(false endorsement)等。 Trader Joe’s表示其花費大量時間及心力洞悉消費市場需求及產品推出時機點,逐項開發及製造產品,而Hallatt卻不費吹灰之力,直接買進相關產品後於加拿大以較高價格再次販售。Pirate Joe’s的經營模式可能誤導甚至欺瞞消費者使消費者誤認Pirate Joe’s為經過Trader Joe’s授權或同意之賣商。此外,Trader Joe’s認為Pirate Joe’s店面視覺上與Trader Joe’s超市外觀十分相近,有抄襲Trader Joe’s著名的商業表徵(South Pacific trade dress)。更甚者,Trader Joe’s認為Pirate Joe’s販售的有可能是已經受損的、過期的或其他不符合Trader Joe’s品管標準的產品,Pirate Joe’s這樣的銷售行為將導致Trader Joe’s無法解決前述所指出的產品潛在問題,嚴重毀損Trader Joe’s商譽及品牌形象。 另一方面,Hallatt則認為他僅是為了加拿大消費者方便,為消費者省去交通成本、時間等,讓消費者在加拿大即可購買到美國Trader Joe’s的產品,其認為其有權利再次銷售其合法購買取得的商品,即便他販售的價格稍微高些。 此訴訟目前仍在進行中,一方為美國知名大型超商Trader Joe’s,另一方為販售Trader Joe’s產品的加拿大超商Pirate Joe’s,在「品牌形象保護」及「產品合法再銷售範疇」兩者權衡下,究竟這場商標相關爭訟結果為何值得拭目以待。
醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。
國際產業創新合作策略實例 – 歐盟之歐洲科技與創新機構(EIT)