高智發明(Intellectual Ventures)揭開其專利寶庫

  擁有專利但不生產商品,以購買專利與主張專利為主要商業模式的專利蟑螂,近來在美國引起眾多討論,2013年6月,美國白宮更正式發表聲明,不但要求行政機關打擊專利蟑螂,更建議立法機關作出相關修法。

  高智發明(Intellectual Ventures,以下簡稱IV)自2001年創立以來,擁有約7萬個專利,其中4萬個屬於IV商業化專案,為主張專利之武器群。一向不承認自己屬於專利蟑螂的IV,2013年12月公開表列出3萬3千個用以主張專利侵權獲利之專利,包括無線技術、半導體技術、硬體、以及生物技術等高值專利;至於其他未公開的專利,IV則稱受限於第三方的保密義務無法公開。

  IV宣稱此舉目的在於提供潛在專利被授權人或買受人一個購物清單;然而更為可能的,是面對同年11月底甫通過眾議院投票之創新法案帶來的壓力,所釋出之善意表示退讓。

  前述公開清單目前在IV官網上公開提供下載與搜尋,對於企業或事務所,將來受到不知名公司控告專利侵權時,可以檢視這份清單,瞭解該案是否為IV所主導,但實際在訴訟策略上該如何運用學界與實務界尚未有明確的作法,值得繼續觀察。

相關連結
※ 高智發明(Intellectual Ventures)揭開其專利寶庫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6438&no=0&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
你可能還會想看
Ofcom對市內用戶迴路接取批發市場發布管制措施並徵求各界意見

  固定通信網路(以下稱固網)寬頻、電話服務通常倚賴市內電話交換機(local telephony exchange)與住宅或商辦間的固網連接才得以運作,而在多數區域,這樣的連接服務僅由一或兩個實體網路業者所提供。有鑑於此,英國通訊管理局(The Office of Communications,Ofcom)遂對市內用戶迴路接取批發(wholesale local access, WLA)市場的規範發布三份諮詢文件,其目的除希望能促進光纖網路的投資外,也要保障消費者免於支付高額的使用費。   為了達成這樣的願景,Ofcom要求英國電信(British Telecom, BT)旗下提供WLA服務之子公司Openreach需允許寬頻競爭業者得以使用其網路銷售寬頻服務予人民或企業。Openreach提供數種傳輸速率的服務方案,並依不同方案對服務提供者收取不同的批發價格。根據Ofcom的分析結果,Openreach在高速寬頻服務(superfast broadband service)各項方案中,最具影響力的即為提供下載速率40Mbps/上傳速率10Mbps之服務方案。截至目前為止,受限於人民可選擇較便宜的寬頻服務當作替代方案,故BT對於服務方案價格的調漲有限。然而,這樣的限制隨著人們對網速的需求與連線品質的日益增加而日趨式微,Openreach顯然有足夠的誘因對服務方案的價格進行操作。因此,Ofcom責成Openreach需就其40/10Mbps之服務方案逐年調降向服務提供者收取之費用,由2017年的每年88.80英鎊至2020/21年降為每年52.77英鎊。藉由對服務提供者營運成本的逐年遞減,達到消費者服務使用費也隨之降低的目的;對40/10Mbps方案設下價格上限(price cap)的做法,長遠來看,也提供BT的競爭對手有投資建設其自有超高速網路(ultrafast network)的誘因。   此外,Ofcom對於WLA連線過程中,屬於Openreach維護範圍之故障排除或線路建置時間等服務品質(quality of service)的要求也更趨嚴格,包括: 於收到通知後1至2個工作天內完成93%的報修(現為80%); 6至7個工作天內完成97%的報修; 於收到新線路建置通知後10個工作天內安排90%的新線路建置預約(現為12個工作天內安排80%的新線路建置預約); 於Openreach與電信供應商協議之日期前完成95%的連線建置(現為90%)。以上要求皆需於2020/21年完全實現。   Ofcom這些管制措施是WLA market諮詢文件的一部份,確切施行期間為2018年4月至2021年3月,意見諮詢預計於2017年6月9日結束。Ofcom預計於2018年初發表其最終決定,而定調後的規範將於2018年4月生效。

奈米技術可能對健康與環境產生危害,專家呼籲應加強檢測與管制

  幹細胞研究成果被認為將會是未來的醫療主流之一,不過由於這項研究牽涉到敏感的道德與宗教議題,政府對此一研究究竟要採何種立場,在西方國家一直爭論不斷,故最終得以立法方式獲得共識並表明政府政策態度的國家,仍為少數。即使先進如澳洲,亦遲至2002才通過第一套相關的法律-禁止人類複製法(The Prohibition of Human Cloning Act)與人類胚胎研究法(Research Involving Human Embryos Act)。   人類胚胎研究法建立了一套核准體系,對使用人工生殖技術之剩餘胚進行研究者,由國家健康及醫學研究委員會下之胚胎研究核准委員會(The Embryo Research Licensing Committee of the National Health and Medical Research Council)核發許可;該法雖允許使用人工授精的剩餘胚進行幹細胞研究,但並未特別就治療性複製部分予以規範。澳洲政府目前是以行政命令的方式,禁止醫療性複製的研究,此一禁令於2005年4月再度被延長5年。   澳洲眾議院(The House of Representatives)最近以82比62的投票比,表決通過「人類生殖性複製禁止與人類胚胎研究管理修正案」(Prohibition of Human Cloning for Reproduction and the Regulation of Human Embryo Research Amendment Bill 2006),廢止先前的禁令,開放基於醫療目的得製造胚胎進行幹細胞研究,同時明訂所製造的胚胎不得殖入於子宮內,並應在十四天內銷毀,違反本法規定者,最高可處以十五年之有期徒刑。根據規劃,本法將在相關主管機關制訂完成有關卵子捐贈及研究許可申請之相關作業細節規定後之六個月實施。

美國國會將跟進加州與馬里蘭州 立法禁止商家禁止或限制消費者於評價網站上散佈負面評價

  看準消費者利用網路就其各別消費經驗進行評論的商機,不少業者紛紛提供專門作為消費評論的網路平台服務,例如美國最大評論網站yelp以及臺灣的「愛評網」等評論網站。然而,消費者若在網路上就其消費經驗對特定商家發表負面評論,難免對於商家的商譽或營業表現造成影響,因此部分商家試圖利用各種手段避免消費者於熱門評論網站中發表負面評論。最常見的手段為商家藉由其與消費者間的契約中加入「禁止負面評論約款」(Nondisparagement Clause),向發表負面評論的消費者或經營評價網站的業者主張其契約上的權利,但該作法也導致消費者與商家間的法律層出不窮。   較為人所知的爭議案例為,一間位於紐約市的酒店因至該酒店參加婚宴的顧客於Yelp等評論網站上留下諸多負面評價,該酒店即依據契約向使用場地舉辦婚宴的新婚夫妻, 以每一則負面評價500美元為計,收取一筆高額的賠償金。另有較特別的案例為,紐約市有一名牙醫師於其與診所病患間的契約中明訂授權約款,將任何病患可能於就診後作成的負面評價,以著作權授權的方式授予該名牙醫師,而該名牙醫師復以被授權人的身分,依據該契約向Yelp等消費評價網站主張刪除網站上針對其所營診所的相關負面評價。   因應愈來愈多的商家藉各種手段試圖限制消費者在熱門評價網站上發表負面的消費經驗或評論,加州議院於2014年9月正式表決通過並由該州州長簽署,於民法中增訂第1670.8條(California Civil Code §1670.8)之規定,使消費者發表消費評論之自由能夠受到更完整的保障。依據該法之規定,消費者有權對其所消費商品或服務的出賣人、出租人或其受僱人與代理人發表陳述(statement);若任何契約禁止或限制消費者發表與其消費經驗相關評論之權利,則該契約應屬無效。總檢察長(Attorney General)以下的檢察官或個案消費者可透過民事程序向違反該法律規定者起訴,法院最高可以將行為人處以初犯2500元美金以及累犯每次5000美元的罰款。   馬里蘭州議會亦於2016年2月表決通過於該州《商業法》(Commercial Law)中增訂14.1325條(MD. Comm. Law gcl. §14.1325),該州法規定與上述加州州法同樣保障消費者對其消費經驗加以評論之權利,且違反該法的行為人除了將負擔1000美元及累犯每次5000元美金的罰款之外,若構成輕罪(misdemeanor)則可能被處以一年以下的拘禁,且得併科1000美元罰金。   除了上述二州對保障消費者消費評論的法制加以強化之外,美國國會也正在進行相關的立法工作。聯邦參議院於2015年12月表決通過《2015年消費者評論自由法》(Consumer Review Act of 2015),該法案(H.R.2110, 114th Cong. (2015-2016))目前於聯邦眾議院的「工商業與貿易委員會」(Subcommittee on Commerce, Manufacturing, and Trade)中待審。該部聯邦法除了將使任何禁止或限制消費者以任何方法評論商品或服務的契約效力歸於無效之外,更禁止商家與消費者約定移轉任何關於消費經驗評論的智慧財產權。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP