據猶他州政府檔案存取及管理法(the Government Records Access and Management Act,簡稱GRAMA),該州選民註冊資料及投票歷史紀錄檔案屬於得公開資訊,據此,猶他州民得給付1,050元美金並填寫申請表,向政府申請取得全州選民數據庫之資料。
上開法令作為申請之依據,UTvoters.com創辦人Tom Alciere透過向該州政府申請並取得該州選民資訊後,建置該網站。透過該網站系統,任何人可查詢該州選民選舉資料。Tom Alciere指出,倘選民認為他們資訊被公布網站上並不合理,他們可以要求移除網站上的資訊,但這些資訊仍被記錄在該州數據庫中,且仍可被公開取得。
該州負責選舉主任委員Mark Thomas指出,倘能證明自身安全因資料遭公開而陷入危險,或具有某些情況如屬政府官員(例如州市長或參議員)等資料,基於安全考量,得移除數據庫之資料。
該州選民認為他們資料如同信用卡被竊一般的遭到洩漏,且不應被公開於網路;該州參議員Karen Mayne亦認為該不合理制度須做改變,政府一方面應鼓勵民眾參與投票,但非在過程中犧牲與公開選民的個人資料。
相關修正案之建議,限制該類資料僅能作為「政治」上的使用,且應排除與網路連結。若違反,則將面臨6個月以上有期徒刑及1,000美元以上之罰金。
2021年6月,美國有多位參議員針對營業秘密保護提出立法建議,目的是要讓認為自己的智慧財產權受到竊取的企業,可阻擋盜竊其營業秘密者的相關產品進口到美國。 參議員John Cornyn和Christopher Coons提出藉由修改1930 年的關稅法(Tariff Act),在美國國際貿易委員會(International Trade Commission,簡稱ITC)中設立新的委員會,並由美國司法部長(Attorney General)領導,負責調查背後為國外政府支持之競爭對手的智慧財產權盜竊指控。智慧財產權所有者可透過提交經宣誓的聲明書提出指控,或由司法部長辦公室提出指控。此立法設定30天的調查期限讓調查人員決定是否在冗長的審查展開時停止其產品進口。該法案將適用於來自任何國家的進口產品,但據了解,目前大部分的智慧財產盜竊指控都是來自於中國大陸公司。 雖然在ITC已有類似的程序可提出救濟,但在現行制度下需要的時間過長,最近一年在ITC進行的調查平均時長為19個月。透過此法案設計的制度,將使有關當局在調查營業秘密盜竊指控時,可更容易地阻止因竊取營業秘密而製造出的產品進口到美國。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。 2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。 卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。 雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。
日本學術會議建議因應疫情強化ICT建設和推動數位轉型日本學術會議於2020年9月15日提出「邁向感染症對策與社會改革之ICT基礎建設強化和數位轉型推動」(感染症対策と社会変革に向けたICT基盤強化とデジタル変革の推進)法制建議。新冠肺炎疫情突顯出日本ICT基礎建設不足和急需數位轉型之問題,日本學術會議從「醫療系統之數位轉型」、「社會生活之數位轉型」和「資安與隱私保護」等觀點提出建議,希望能在確保資安及隱私的前提下,達到防止感染擴大與避免醫療崩壞,以及減少疫情對社會經濟影響等目標。針對「醫療系統之數位轉型」,未來應建立預防和控制感染症之綜合平台,統一地方政府感染資訊之公開內容、項目,檢討遠距醫療和數位治療法規,進行相關法制環境和基礎設施之整備;針對「社會生活之數位轉型」,日後應積極推動遠距醫療、遠距工作和遠距教育,並進行所需基礎建設、設備和人才培育之整備;針對「資安與隱私保護」,除檢討建立利用感染者個人資料,以及可知悉個人資料利用狀況之制度,亦應擴大及強化信用服務(trust service)和感染資訊共享系統等措施。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。