猶他州選民詳細資料遭網站公開,引起社會大眾關注

  據猶他州政府檔案存取及管理法(the Government Records Access and Management Act,簡稱GRAMA),該州選民註冊資料及投票歷史紀錄檔案屬於得公開資訊,據此,猶他州民得給付1,050元美金並填寫申請表,向政府申請取得全州選民數據庫之資料。

  上開法令作為申請之依據,UTvoters.com創辦人Tom Alciere透過向該州政府申請並取得該州選民資訊後,建置該網站。透過該網站系統,任何人可查詢該州選民選舉資料。Tom Alciere指出,倘選民認為他們資訊被公布網站上並不合理,他們可以要求移除網站上的資訊,但這些資訊仍被記錄在該州數據庫中,且仍可被公開取得。

  該州負責選舉主任委員Mark Thomas指出,倘能證明自身安全因資料遭公開而陷入危險,或具有某些情況如屬政府官員(例如州市長或參議員)等資料,基於安全考量,得移除數據庫之資料。

  該州選民認為他們資料如同信用卡被竊一般的遭到洩漏,且不應被公開於網路;該州參議員Karen Mayne亦認為該不合理制度須做改變,政府一方面應鼓勵民眾參與投票,但非在過程中犧牲與公開選民的個人資料。

  相關修正案之建議,限制該類資料僅能作為「政治」上的使用,且應排除與網路連結。若違反,則將面臨6個月以上有期徒刑及1,000美元以上之罰金。

相關連結
※ 猶他州選民詳細資料遭網站公開,引起社會大眾關注, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6482&no=86&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
日本內閣決議通過航空法修正案,增列小型無人機管制規範

美國國會提出SHIELD法案 圍堵專利蟑螂橫行

  為反制專利蟑螂利用訴訟方式滋擾實際從事研發以及實施專利者,美國國會於2012年8月提出SHIELD法案(Saving High-Tech Innovators from Egregious Legal Disputes Act of 2012 ),顧名思義本法案之目的在於防免高科技創新者陷於惡意挑起的法律爭端之中。該法案補充美國聯邦專利法規定,使得法院得在發現當事人一造並無合理勝訴之可能而仍舊對電腦硬體或軟體專利之有效性提起訴訟,或主張被侵權時,法院得判決其回復全部訴訟之費用支出予除美國以外勝訴之一造(the prevailing party),包括合理之律師費。   SHIELD法案原立意良善,但其也可能就像兩面刃,例如法案的規範內容用語抽象,以致於在企圖達到其立法目的外,未同時設想可能造成的法律陷阱或未預期之法律效果。就法案內容來看,其賦予法院得判決要求回復訴訟費用及律師費之人(所謂勝訴之一造)並不限於原告。又本法案得適用在任何電腦或軟體專利的訴訟,因此,當兩家大型公司相互就專利實施進行對決時,SHIELD法案無異使得原本已經成本很高的競爭更提高雙方的賭注。此外,法案中對「電腦」的定義,不限於一般認知的「軟體或電腦硬體公司」,使得從金融業到汽車製造都可能涵蓋在內,例如銀行就有許多系統可能同時連接具專利之電腦或其他軟體組件。更重要的是,何時勝訴方可獲得律師費之補償判決,法案亦沒有給法院明確之範圍。   雖然本法案最後通過與否或通過施行後的樣貌仍未可知,但可得知的是對於部分NPE之負面利用專利制度之行為,已促使政府與法界思索專利制度如何衡平專利權保護而更能達到專利制度設置之目的,而其未來顯然仍有一段遙遠的路要走。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

英國財政部公告公眾諮詢結果回應,因效益不足決定停止推動綠色分類標準

英國財政部(HM Treasury)於2025年7月15日回應有關綠色分類標準(green taxanomy)實效性之公眾諮詢結果並發布評估結論。本諮詢於2024年11月啟動,旨在評估綠色分類標準能否有效達成「引導資金投入淨零轉型」及「預防漂綠行為(greenwashing)」之兩大目標。 以下說明利害關係人回饋意見重點內容: (1)引導資金投入淨零轉型 金融機構受訪者多認為分類標準並非引導資金流向之關鍵政策工具,僅能作為投資考量之其中一項參考依據,而對最終決策影響有限;並認為就特定產業制定去碳路線圖,同時闡明未來投資監理法規、補助獎勵計畫、稅制變革等,始為有效引導淨零轉型投資之政策措施。 (2)預防漂綠行為 跨國企業受訪者擔憂英國建立自身分類體系將導致國際標準更加零碎,同項經濟活動於不同司法管轄區可能被歸類為不同屬性,反而增添漂綠風險;並認為既有政策規範足以應對漂綠問題,如「競爭與市場管理局」(Competition Markets Authority, CMA)與「廣告標準管理局」(Advertising Standards Authority, ASA)為確保綠色聲明正確性所發布之相關指引等。 綜上所述,英國政府於審酌相關意見後,決定不再繼續推動綠色分類標準。於資源有限下,政府將專注於落實產業界認為對於加速淨零轉型投資具更高優先性與影響力之政策,同時持續評估是否需採取更多措施以預防漂綠行為。

TOP