中國大陸近年來積極布局智慧城市建設,並逐步將智慧城市的概念發展為具體的地理空間,2014年2月14日智能系統國家測繪地理信息局測繪發展研究中心--社會科學文獻出版社,發布2013年測繪地理信息藍皮書—《智慧中國地理空間智能體系研究報告(2013)》(以下簡稱「藍皮書」),揭示提出打造2030年智慧中國地理空間智能體系的具體目標。係以巨量地理資訊資源為基礎,透過新一代網際網路,以智慧聯網(Internet of Things, IoT)、雲端計算(Cloud Computing)和巨量資料(Big Data),實現地理資訊的智慧化應用,並透過相關政策形成以地理資訊獲取、處理及應用為主的雲端產業鏈。 自2013年起,中國大陸國家測繪地理信息局每年選擇10個城市作為智慧城市建設試點,目前已有太原、廣州、徐州、臨沂、鄭州等試點城市完成初步項目,正進行設計論證及完善基礎設施等工作。該局副局長李維森並指出,大陸將在2015年全面完成數字城市地理空間框架建設,並於此基礎升級為智慧城市。 中國大陸國土資源部亦從2013年底配合「十二五規劃」逐步推動以雲端運算、巨量資料以及智慧聯網等新一代資通訊技術所建構之「國土雲」,以滿足國土資源資訊利用、查詢、監管的需求,並透過資訊數位化,為其他領域重大工作提供基礎資訊。 從中國大陸近年來對於國家地理資源之蒐集、調查與管理手段觀察,可探知其對於國土資訊產業發展的高度重視,並欲在維護國土安全的前提下,加強推動有助於促進資訊流通效率以及資源廣泛利用的公共服務平台建設;對於此等具有國家安全戰略意義之新興科技領域,目前仍以國家投資為主要推動手段,後續相關法規發展殊值注意。
數位內容通路商收購相關支援技術數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。 隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
台灣每人二氧化碳排放量逐年增加 全球第二十二名台灣自一九九○年至二○○四年止,平均每人排放量自五‧五七公噸大幅增加至十一‧五九公噸,以國際能源總署 (IEA )截至2002年統計,全球排放量前三名為美國、中國及俄羅斯,台灣則排名全球第22名。 主計處表示,依 IEA 統計資料庫顯示,二○○二年全球二氧化碳排放量前六名為美國(57.1億噸,占全球23.3﹪)、中國(34.7億噸,占14.2﹪)、俄羅斯(15.2億噸,占6.2 ﹪)、日本(11.8億噸,占4.8 ﹪)、印度(10.5億噸,占4.3﹪)及德國(8.5億噸,占3.5 ﹪)。台灣則排第 22 名(1990年為第28名),排放量占全球總量約1﹪,而經濟發展程度與我國相近的南韓、新加坡排名分別為第9名(4.7億噸,占1.9﹪)及52名(5500萬噸,占0.2﹪)。 行政院主計處據工研院能源與資源研究所統計,公佈最新「我國燃料燃燒排放二氧化碳」概況,台灣溫室氣體排放以二氧化碳為最大宗,佔八成以上,至二○○四年為 2.6億噸。 主計處指出,為抑制人為溫室氣體排放導致全球氣候變遷加劇現象,聯合國在一九九二年通過「聯合國氣候變化綱要公約」,且為落實排放管制工作,具有約束效力的「京都議定書」,已在今年二月十六日正式生效,期使在二○○八至二○一二年間,六種溫室氣體排放量平均應削減至比一九九○年低五‧二 %水準。在全球持續增溫、海平面上升及氣候變遷加劇下,台灣雖非京都議定書締約國,但政府相關部會順應國際永續發展潮流,正積極落實檢討溫室氣體排放減量政策。