美國總統歐巴馬於2014年初對於美國專利改革及產業創新的規範做進一步的聲明。美國近年來針對專利法改革有許多大規模的法案實施,目的希望能提升整體美國產業,包括2011年通過的美國發明法案(Leahy-Smith America invents Act, AIA),目的希望能讓美國專利系統更加完善,保護專利權人及促進產業創新等目的。然許多專利仍被NPE或是專利蟑螂控訴侵權,反而讓專利權被用來當做專利訴訟的一個工具,花費更多的經費在訴訟及和解上,有違當初白宮要進行專利改革的初衷。
因此歐巴馬在年初為了能鼓勵創新及增加專利系統的品質而發布幾點執行聲明(executive actions):
1、著重prior art的檢索:USPTO開始著重prior art的搜尋,幫助專利審查能更詳盡。
2、增進專利審查人的技術訓練:提供教育專業訓練,讓專利審查人能隨時更新最新的技術,能在審查過程中對於技術上的認知能更專業。
3、Pro brono幫助:USPTO提供pro brono的幫助。許多發明人對於如何申請專利及如何使其專利被妥善保護等規範較缺乏相關資訊、或沒有資金聘請顧問協助此方面保護,因此USPTO會提供教育及實務訓練,讓這些較小的公司或資源較缺乏之發明人的專利得以獲得保護。
本文為「經濟部產業技術司科技專案成果」
日本2017年4月施行「資金結算法(資金決済法)」修正,正式承認虛擬貨幣作為支付工具,其本身得為買賣(與法定貨幣為交換),具有財產價值得以電子方式移轉之電子資訊,但是不等於法定貨幣。依據該法第2條第5項之定義規定,具有以下性質之財產價值者為虛擬貨幣:(1)對於不特定人,得作為代金支付之使用,而且與法定貨幣(日圓或美元等)得為互相交易;(2)以電子數位技術為紀錄與移轉;(3)非為法定貨幣或法定貨幣所成立之資產(預付卡等)。 2014年以東京為據點世界最大比特幣交易所Mt.Gox發生破產,導致鉅額比特幣消失事件,為了保護消費者與防止洗錢而為法律制度之整備。該法對於虛擬貨幣交易所為管制,(1)要求提供虛擬貨幣交易服務之交易所必須為登記(必須為股份有限公司以及資本額1000萬日圓以上);(2)對於利用者必須為適切之資訊提供;(3)為了適切管理利用者財產,業者必須將利用者之財產及虛擬貨幣與自身之財產分離管理;(4)為了防制洗錢,交易時必須為本人確認;(5)對於交易所為日常業務監督,必須作成帳冊書類及報告書,並提出具有會計師或監察法人簽證稽核之報告書,管制機關得為進入檢查、行使業務改善命令等之監督權。今年9月底,有11家完成登記程序,12月4日有5家完成登記,共16家目前為登記合法之比特幣交易所。 近來日本大型家電量販店等已有承認比特幣等虛擬貨幣可以作為支付手段,其他承認虛擬貨幣作為支付手段的商店也漸漸增加中,虛擬貨幣與一般民眾的生活漸為結合。但是虛擬貨幣仍有其風險,從國民或消費者保護觀點,政府也在相關處所加入明顯警語,提醒民眾虛擬貨幣並非法定貨幣,國家不保證其價值,而且虛擬貨幣之價值,會因買賣或經濟狀況等會有價值波動情形。利用虛擬貨幣交換業者之服務時,應注意僅得以在金融廳登記有案之業者為對象,同時此等業者負有說明義務,對於利用者有提供虛擬貨幣相關機制之資訊(包含交易內容與手續費),利用者應先聽取後,再決定是否為交易。利用者對於虛擬貨幣交易經歷或戶頭餘額應隨時確認,而業者至少3個月一次有提供利用者交易紀錄與餘額資訊之義務。
當網路梗圖爆紅 潛藏的著作權侵權疑慮今(2021)年一月中旬在美國總統就職典禮中,由法新社(Agence France-Presse, AFP)攝影記者Brendan Smialowski捕捉到參議員桑德斯(Senator Bernie Sanders)戴著連指手套、雙手環胸在場邊靜候的攝影作品,意外受到網友關注並製作成各式梗圖迷因(meme) 而爆紅。然而,在這些成千上萬的梗圖創作中,除非獲得原創作者的允許或落在著作權法的合理使用範圍,否則皆潛在隱藏了著作權侵權之可能性。 檢視本事件,將該攝影著作去背以取得「寧靜而坐的桑德斯圖像」,而將該去背圖像合成於各式情境場景,甚至架設梗圖產生器網站供其他網友上傳照片以製作更多衍生梗圖。多數在網路上分享之創意梗圖為博取網友一笑為目的,尚屬於著作權合理使用之範圍,然而當藉由該去背圖像或衍生梗圖進行廣告或促銷之用途,如將該去背圖像或衍生梗圖成為商品行銷元素、多次使用於廠商的社群媒體貼文中,將可能落入商業使用之爭議。桑德斯本人便將該去背圖像製作成運動衫進行慈善募款,儘管所得為慈善用途,但仍屬於商業使用;此外,該去背圖像未將原創進行任何轉化而直接轉印在衣服上,亦無法主張合理使用。儘管存有侵權疑慮,現階段攝影師似乎樂見其攝影作品成為各式梗圖而瘋傳,不過當開始有人藉由其攝影著作賺取金錢,情境可能就有所不同,攝影師將可能進行追究。 回顧過去類似將網路梗圖迷因進行商業使用,而產生著作權侵權爭議之案件。早如2009年美聯社(Associated Press)記者所拍攝前美國總統歐巴馬競選活動之肖像特寫,遭到前衛街頭塗鴉藝術家費爾雷(Shepard Fairey)在未經授權使用之前提下,將該攝影著作改作名為《希望(Hope)》之海報與各式商品並進行販售,美聯社因而對費爾雷提出侵權訴訟,儘管最後雙方和解,但兩者在過程中皆投入不少訴訟資源。其他案例如2019年體育流行文化媒體Barstool Sports與社群媒體Jerry Media等,皆因藉由擷取網路梗圖吸引網路社群觸及以進行消費等商業行為,遭到原創者檢舉而被迫刪除歷年貼文。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本農林省研議農業AI契約指引日本為提高農產品品質及附加價值,近年積極推動智慧農業,鼓勵利用AI等新技術研發農業產品和相關服務,惟技術研發需要使用大量資料訓練AI模型,部分農業工作者擔心自身經驗及知識等資料在研發過程中外洩,為避免上述狀況發生,農林水產省於2019年7月9日召開「農業AI利用契約指引檢討會」(農業分野におけるAIの利用に関する契約ガイドライン検討会),研議「農業AI利用契約指引」,防止在進行AI相關應用研發時,農業工作者提供之資料不慎外洩或遭到不當利用,導致其權益受損。 「農業AI利用契約指引檢討會」於2019年12月19日舉辦第3次會議,公布農業AI利用契約指引草案,草案內容包括(1)總論︰說明本指引之制定目的、農業與AI的關係,以及本指引與其他類似指引之差異和適用範圍;(2)農業AI產品、服務契約基本事項︰說明利用AI研發之農業產品和服務相關之智慧財產權,契約要件(契約目的及契約當事人等)及農業AI模型研發流程等基本概念;(3)農業AI產品、服務契約注意事項︰說明AI產品和服務契約之特徵和注意事項,以及利用AI等新技術進行研發之當事人訂定契約時應注意的問題,如農業工作者所提供之資料的重要性、以及個人資料的處理方式等;(4)契約範本︰針對農業AI研發契約、農業AI產品和服務利用契約,以及向第三方提供農業資料之契約,說明契約內容重點及提供範本供作參考。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現