2014年2月12日,美國發表「網路安全框架(Cybersecurity Framework)」,該框架係由美國政府、企業及民間機構花費一年的時間共同發展而成,其蒐集了全球現有的標準、指引與最佳實務作法,最後由國家標準技術局(National Institute of Standard and Technology, NIST)彙整後所提出。
本框架主要可分成三大部份:
1.框架核心(Framework Core)
框架核心包括辨識(Identify)、保護( Protect)、偵測( Detect)、應變( Respond)、與復原( Recover)等五項功能。這五項功能組成網路安全管理的生命週期,藉由這五項功能的要求項目與參考資訊的搭配運用,可使組織順利進行網路安全管理。
2. 框架實作等級(Framework Implementation Tiers)
共分成局部(Partial)、風險知悉(Risk Informed)、可重複實施(Repeatable)、合適(Adaptive)四個等級。組織可以透過對風險管理流程、整合風險管理計畫以及外部參與等三個面向的觀察,瞭解組織目前的安全防護等級。
3. 框架側寫(Framework Profile)
框架側寫係組織依照本框架實際操作後所產出的結果,可以協助組織依據其企業需求、風險容忍度,決定資源配置的優先順序,進一步調整其網路安全活動。
此一安全框架旨在提供整體規劃藍圖予尚未建立網路安全架構的組織參考,而針對已有建立網路安全架構者,該框架並未意圖取代組織原先的風險管理程序和網路安全計畫,而係希望協助公、私部門改善資通訊科技和工業控制系統風險管理的能力。
美國總統拜登(Joe Biden)於2023年1月10日首次發布「交通運輸業去碳藍圖」(The U.S. National Blueprint for Transportation Decarbonization),致力於2050年前達成交通運輸業淨零碳排目標。 交通運輸業碳排放占美國碳排放總量三分之一,是二氧化碳的主要排放源,有鑒於此,是美國淨零路徑的優先重點對象。「交通運輸業去碳藍圖」是以《跨黨基礎建設法》(Bipartisan Infrastructure Law)和《降低通膨法案》(The Inflation Reduction Act)作為依據,這兩部法律代表美國願意對建立一個更安全、更永續的交通系統而做了歷史性投資。本藍圖由美國能源部、運輸部、住宅與都市發展部以及環保署共同訂定,列出交通運輸業整體淨零轉型的重要方向與架構,具體體現拜登政府力抗氣候變遷,誓言2035年達到100%潔淨電能、2050年實現淨零碳排放的目標。 藍圖提出交通運輸業去碳策略的三大方針: (1)提升生活便利性。 透過區域、州以及地方層級的基礎設施投資暨土地使用規劃,確保工作場所、購物中心、學校、娛樂以及各種生活服務設施皆在國民居住生活環境周邊。從而減少通勤時間、提供良好的步行與自行車發展環境、提升生活品質。 (2)更高效的交通運輸系統。 透過更高效的交通運輸系統暨潔淨能源運輸規劃,可有效降低氣候變化風險及其影響,確保構成整體性的均衡運輸系統,得以達成永續交通系統的目標。 (3)推動零排放車輛。 透過部署電動車充電或氫燃料補充設備計畫,推動低污染、使用清潔能源、油電混合車、氫燃料電池車等零排放車輛。 藉由「交通運輸業去碳藍圖」,將可望完善綠色運輸規劃、減少消費者支出、改善公眾健康,同時保障國家能源安全,進而提升美國人民生活品質、環境永續性,並兼顧國家經濟的可持續發展。 面對全球淨零排放浪潮,此藍圖值得讓同樣已宣示將和國際主流同步,達到2050淨零排放目標的我國,借鏡參考。
電子投票機制及法律議題之研究 英國國家統計局政府資料品質中心發布《政府資料品質框架》英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。 英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。