蕃茄醬瓶身相似設計引發商標侵權之爭

  今年(2014)3月6日美國號稱蕃茄醬巨人的H.J. Heinz Co. (以下簡稱Heinz)於美國德州聯邦法院向一家德州公司Figueroa Brothers Inc. (以下簡稱Figueroa)提起商標侵權訴訟,主張Figueroa製造販售的蕃茄醬採用與其設計幾近相同的瓶身(ketchup bottle),侵害其極具識別性、代表性的商業表徵(trade dress)。

  Heinz目前針對該玻璃瓶設計已註冊取得3個聯邦商標,其除了主張聯邦商標法保護外,亦基於普通法(common law)提起商標侵權主張。然而,Heinz表示,在提起訴訟前,已數次嘗試與Figueroa私下解決此爭議,但未果,所以最後才會訴諸法律途徑,提起訴訟。

  Heinz於訴狀中表示從1890年代開始,便開始行銷販售有名的蕃茄醬產品,該產品的包裝即為系爭具有高度識別性的玻璃瓶設計。Heinz認為被告Figueroa未經同意擅自使用此瓶身設計的行為會造成消費者混淆,搭便車利用Heinz花費大量心力、時間和費用所累積的良好商譽來牟利。此外,Heinz並注意到Figueroa其他醬料產品例如莎莎醬、辣醬皆使用不相似的包裝,惟獨蕃茄醬產品包裝跟其有名的玻璃瓶設計幾乎完全相同。

  自Heinz提起訴訟過了近一個禮拜,案情有了變化,Figueroa於4月初與Heinz和解,雖然Figueroa並未承認其侵害Heinz商標權,但同意從今年12月開始停止使用該玻璃瓶設計,並從此不再侵害Heinz的商業表徵(玻璃瓶設計)。然而,和解金額相關條款並未揭露。

  此案之後,對於其他欲仿冒或剽竊Heinz的玻璃瓶設計者,是否會有遏阻影響,值得後續觀察。

相關連結
※ 蕃茄醬瓶身相似設計引發商標侵權之爭, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6525&no=65&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

日本智財戰略本部成立兩專案小組並公布2015年度本部成員

  日本依據2013年6月發布之「智慧財產政策願景」,目前正由智慧財產戰略本部所屬之「檢證/評價/企畫委員會」,著手制定2015年度之智慧財產推進計畫。   此外,委員會並針對產業財產權領域下的「地方智財活用促進」和「智財紛爭處理」兩項課題設置專案小組,將分別就促進地方中小企業的智財活用、管理工作,以及創造有利於妥善設定、保護、活用專利權之專利紛爭處理機制等議題進行集中的檢討,作為智財戰略本部制定2015年度智財推進計畫之參考和依據。   而依日本智慧財產基本法第29條之規定,組成智財戰略本部之本部員,除包括總理大臣在內之內閣全體均為當然成員外,還將另由總理大臣任命對智財創造、保護和活用有優秀見識之民間專門人士擔任成員。就此,日本於2015年3月19日已公布2015年度之智財戰略本部成員名單,十位民間專門人士當中除了前日本專利師會會長奧山尚一、東京大學理事長五神真等人外,同時納入身兼京都精華大學校長身份的漫畫家竹宮惠子、總合科學技術創新會議議員原山優子、專精於智財及競爭法的律師宮川美津子以及東北電子產業股份有限公司總經理山田理惠等四位女性部員,成員背景囊括產業財產權和內容著作權之產業、學研、實務界專門人士。

惠普 : 軟體專利是必要之惡

  智慧財產權議題涉及專利、著作權和商業機密,近年來因開放原始碼軟體而備受矚目。開放原始碼軟體可共享、修改和重新發布,和傳統專屬軟體的保密性和發布限制迥然不同。   許多開放原始碼與自由軟體倡議人士都痛批軟體專利,相形之下,惠普以擁有大量的專利為傲。2004年惠普一共獲頒1,775項美國專利,在美國排名第四。   惠普Linux負責人表示,開放原始碼程式設計師或許厭惡軟體專利的概念,但最好還是試著自我調適,因為軟體專利是不會消失的。且開放原始碼軟體是在著作權法的基礎上發展而成的,而專利比較麻煩,是因為程式設計師把專利視為削弱他們的自由。另一方面,企業則把專利看待成自家珍貴創意的保護傘。   惠普Linux副總裁Martin Fink批評開放原始碼促進會(Open Source Initiative;OSI)核准開放原始碼授權證書的作法太草率。去年8月,Fink曾指出,開放原始碼授權證書多達52種,實在太多了。現在數目變得更多,因為他抱怨OSI核准任何符合開放原始碼定義的申請案,卻不試著加以整併以強化開放原始碼業的基礎。只基於符合規格就核准授權證書,而未顧及進一步鞏固開放原始碼經營模式的能力,這會構成明顯而迫切的危險。   一家銷售智財權法律免責保險的公司說,調查顯示,Linux作業系統的核心(kernel)可能涉及283項專利侵權。惠普2002年也提醒眾人,微軟可能醞釀對開放原始碼軟體提出專利訴訟。但目前為止這些威脅尚未發生,而紅帽公司(Red Hat)和Novell揚言運用自家專利反制那類威脅,IBM和昇陽也表明不會針對開放原始碼侵犯的數百項專利提出告訴。

日本對未來2020年至2030年間網路基礎設施之預測

  日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。   在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。   物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。   人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。   由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。

TOP