歐盟宣部推動「展望2020」計劃

  歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是:

1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。
2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。
3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。

  在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展:

1.下世代零組件與系統(A new generation of components and system)。
2.先進的計算(Advanced Computing)。
3.未來網際網路(Future Internet)
4.內容技術與資訊管理(Content technologies and information management)。
5.機器人(Robotics)
6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。

  綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。

  在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。

相關連結
※ 歐盟宣部推動「展望2020」計劃, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6549&no=67&tp=1 (最後瀏覽日:2025/12/19)
引註此篇文章
你可能還會想看
開放非銀行事業從事預付式行動付款服務法制議題之研究

英國與新加坡監管沙盒機制概述

日本經產省發布《促進資料價值創造的新資料管理方法與框架(暫定)》之綱要草案徵求意見

  2021年7月中旬,日本經濟產業省(下稱經產省)發布《促進資料價值創造的新資料管理方法與框架(暫定)(データによる価値創造(Value Creation)を促進するための新たなデータマネジメントの在り方とそれを実現するためのフレームワーク(仮))》之綱要草案(下稱資料管理框架草案),並公開對外徵求意見。   近年日本在「Society5.0」及「Connected Industries」未來願景下,人、機器與科技的跨界連接,將創造出全新附加價值的產業社會,然而達成此願景的前提在於資料本身須為正確,正確資料的自由交換,方能用於創造新資料以提供附加價值,因此正確的資料可說是確保網路空間連結具有可信性的錨點。為此,經產省提出資料管理框架草案,透過資料管理、識別資料在其生命週期中可能發生的風險,以確保資料在各實體間流動的安全性,從而確保其可信性。   該框架將資料管理定義為「基於資料的生命週期,管理各場域中資料屬性因各種事件而變化的過程」,由「事件(資料的產生/取得、加工/利用、轉移/提供、儲存和處置)」、「場域(例如:各國家/地區法規、組織內規、組織間的契約)」和「屬性」(例如:類別、揭露範圍、使用目的、資料控制者和資料權利人)三要素組成的模組。經產省期望未來能透過三要素明確資料的實際情況,讓利害關係人全體在對實際情況有共同理解的基礎上,能個別確保適當的資料管理,達成確保資料正確之目的。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP