歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是:
1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。
2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。
3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。
在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展:
1.下世代零組件與系統(A new generation of components and system)。
2.先進的計算(Advanced Computing)。
3.未來網際網路(Future Internet)
4.內容技術與資訊管理(Content technologies and information management)。
5.機器人(Robotics)
6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。
綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。
在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。
德國聯邦政府於2018年11月15日公布聯邦政府人工智慧戰略(Strategie Künstliche Intelligenz der Bundesregierung),除了針對人工智慧一詞定義外,並概述德國人工智慧戰略的3項基本原則,14項目標和12項行動領域。 第一項原則係透過該戰略,為德國在人工智慧(AI)的發展和應用制定整體政策框架,促進德國成為人工智慧最佳研究環境,以及人工智慧在產業與中小企業之應用,以確保德國未來競爭力。第二項原則係人工智慧在社會各領域有多種應用可能性,將可明顯促進社會進步和公民利益,因此重點將強調AI的應用對於人類和環境可帶來的益處,並加強社會各界對於人工智慧主題的密集交流及討論,確保AI朝負責且共同利益為出發點的開發及應用。第三項原則將透過廣泛的社會對話和積極的政策框架,將道德,法律,文化和制度結合人工智慧之應用融入整體社會。 該戰略列舉之工作項目同時包括評量標準,包含建置德法創意網(虛擬中心)、起草國家級且持續性的教育策略、加強相關創業投資力道、針對相關新創公司提供綜合性諮詢和推廣服務、針對自願提供且符合隱私規範之共享資料與建立資料分析基礎設備者研擬獎勵及促進框架、利用風險投資、創業融資和成長科技基金計畫擴展籌資機會、建立至少12個AI應用中心、將人工智慧列為研發機構跳躍式創新的焦點,未來5年加強產學研合作項目推廣、將環境與氣候的人工智慧應用列為發展亮點、共同決策人工智慧技術的導入與應用、透過中小企業4.0中心每年至少與1000家企業建立聯繫並進行AI訓練、將AI實驗室應用情境移轉至工作場所、進一步發展人工智慧平台學習系統、設計擘劃跨領域社會科學之「未來數位化工作與社會基金」、進一步制定相關數位化轉型專家策略、建立德國人工智慧觀測站、組織以人為中心的人工智慧工作環境之歐洲和跨大西洋對話、促進具自決權,社會與文化參與性及保護公民隱私之創新應用、聯邦政府於2025年前將投資約30億歐元於人工智慧發展、開發人工智慧生態系統、培養至少100名相關領域新教授、與資料保護監督機關及商業協會召開圓桌會議。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
瑞士新修正專利法進一步釐清研究、試驗免責範圍近幾年,製藥領域專利權效力的範圍及例外空間何在,引起廣泛討論,為發展製藥產業,諸多先進國家紛紛修改其專利法,擴大專利權例外範圍,使研發工作更易進行,以爭取跨國藥廠研發委外之機會。例如歐盟2004年修正通過的第2004/27指令,即對學名藥的試驗免責予以明文規定,而歐盟各會員國在將該指令內容落實為內國法的過程中,則有不少國家進一步擴大該指令例外規定的適用範圍。 瑞士雖非歐盟會員國,不過其在化學及製藥領域擁有世界一流的領先技術,因此瑞士也特別注意法規範面對於技術研發與產業發展之影響,並在近幾年積極展開類似的修法工作,瑞士新修正的專利法所規定的研究或試驗免責範圍,更進一步釐清農業領域使用受保護之生物物質之疑義,值得參考。 瑞士新修正專利法第9條規定,專利權效力不及於:(1)於私領域基於非商業目的之行為;(2)基於實驗與研究目的,為針對發明客體及其可能之應用獲取新知識所進行之行為,特別是與該發明客體有關之所有科學研究,均為容許空間;(3)為就某一藥品於瑞士取得上市許可,或於其他有類似藥品上市管制的國家取得上市許可所進行之必要行為;(4)為於教學機構中教學之目的而使用發明;(5)為進行植物品種之選育、發現或開發,而使用生物物質之行為;(6)在農業領域,出於偶然或因技術上不可避免而獲得生物物質。 上述新規定自2008年7月1日生效,隨著專利法對研究例外範圍的進一步釐清,瑞士的法規環境更具有發展生技研發服務的吸引力與國際競爭力。
美國第三州!科羅拉多州正式通過《科羅拉多州隱私法》美國科羅拉多州州長於2021年7月正式簽署《科羅拉多州隱私法》(Colorado Privacy Act, CPA)草案,科羅拉多州正式成為美國第三個制定全面性隱私專法的州,該法將於2023年7月1日施行。 隨著全球化及科技快速發展,以及大數據的應用趨勢,資料的蒐集、處理、利用規模及範圍逐漸擴大,全美各地隱私保護規範遍地開花,期待能促使企業在「保護個人資料」與「資料自由流通」及「資料商業運用」中取得平衡。 2018年美國加州首先制定《加州消費者隱私保護法》(California Consumer Privacy Act, CCPA)成為全美第一州級隱私保護專法後,包含華盛頓州、伊利諾州、紐約州等,也都提出各該州級隱私保護法案,而美國維吉尼亞州議會於今年2月通過《消費者資料保護法》(Consumer Data Protection Act, CDPA)法案,並在3月經由州長簽署,正式成為美國第二個擁有隱私保護專法的州,該法預計於2023年1月1日生效。 科羅拉多州於今年6月將CPA草案送交州長簽署後,於7月順利成為第三個通過隱私保護專法的州。一旦CPA生效,消費者除將享有近用權(right of access)、更正權(right of correct)、刪除權(right of delete)、資料可攜權(right of data portability)外;CPA規定在資料控制者對其消費者進行目標式廣告(targeted advertising)、銷售消費者個人資料,或者將對消費者決策產生重大影響時,消費者享有選擇退出權(right to opt out)。 整體而言,儘管 CPA 與CCPA及CDPA規範相似,在隱私保護規範上可能不是特別具有開創性,但CPA反映了美國各州強化隱私保護的趨勢與決心。舉例而言,去(2020)年不僅美國大選結果受矚目,美國各州隱私保護相關公投案,包含《加州第24號提案》、麻州《汽機車機械資料》、密西根州《電子資訊搜索票》及緬因州波特蘭市《臉部辨識禁令》也獲通過。美國在尚未具有統一聯邦隱私保護法下,透過州級隱私立法,保有各州特色並作為各州隱私保護執法依據。