資訊的保密機制和數據的標準化是當代的醫護過程中,相當關鍵重要的一部分,使得資訊得以安全地蒐集、記錄和交換,同時也是衛生照護系統在品質和服務管理上得以維繫的關鍵。過去英國負責處理醫療資訊交換標準的單位為「衛生和社會照護資訊標準委員會(Information Standards Board for Health and Social Care, ISB)」,負責就國家性的資料標準進行評核、統一資料標準格式,進而符合國際規範。為了因應國家治理在資訊標準、資料收集和資料提取上新的規劃,自今(2014)年4月1日起,ISB轉型為照護資訊標準化委員會(Standardisation Committee for Care Information, SCII)。
新的照護資訊標準化委員會-SCCI主要負責發展、批准並保障資訊標準、資料蒐集與資料提取。該委員會的成員組成廣泛地來自國家單位和相關衛生、照護服務組織。現階段的主要目標為標準化醫院和家庭醫生之間的醫療資訊交換,將醫療資訊標準提升至國家層級,透過該委員會的運作來監督、改善照護服務、照護系統和資訊的處理方式,進而達到流程公開和運作透明。以下為ISB轉型為SCCI之主要原因:
1、2012衛生和社會照護法(Health and Social Care Act 2012)之規定,該法§250賦予衛生部長和NHS England(英國國家健康服務)發布資訊標準的權力;
2、NHS成立新的國家資訊委員會(National Information Board, NIB),該委員會前身為資訊服務調查小組(Information Services Commissioning Group, ISCG),主要針對衛生和社會照護提供國家層級的資訊服務整合規劃,以確保資訊標準統一,使得不同IT系統間得以相互傳輸、驅動更多整合服務給人民。SCCI即隸屬於NIB,負責識別、調查和完整執行資訊標準、資料蒐集和提取。
3、衛生部於2012年發布衛生和照護系統的10 年資訊策略(ten year information strategy for the health and care system)。
當蘋果的員工應該是在慶祝iPhone5的發表時,其實該公司的法務團隊為另一個商標侵權的爭議而緊張。 SBB(Swiss Federal Railways)是瑞士的國家鐵路公司,可能控告蘋果在iOS6中,一個新的以時鐘作為特色的使用。該公司聲稱蘋果侵害這個於1944年所創造出的設計。 SBB先前曾經同意鐘錶製造廠在簽署授權同意書後使用該設計,也期待與蘋果進行商討,以盡快解決此一爭議問題。SBB發言人表示:「金錢並非是最優先考量的利益,對於蘋果使用我們的設計我們是感到驕傲的,若是於兩個優質品牌之間可以有合作關係,將會是雙贏的局面。」 而蘋果的發言人回應:「此一有爭議的設計僅出現在iPad没有在iPhone」,並無其他評論。 這似乎是第一個商標爭議,蘋果可以快速且溫和地解決;因為蘋果與Samsung及其他科技大廠在全世界的爭議似乎是永無止境,在中國就得面對不少的法律問題。 的確,再幾周後SBB與蘋果已達成協議,SBB車站時鐘的設計可使用於蘋果的某些產品設備,如:iPad、iPhone,雙方已經過討論並在授權同意書中達成協議,該協議已同意一定金額的授權金,而進一步的授權細節則是維持機密。
新搜尋技術將改變數位內容產業的版圖美國麻省理工學院企業論壇 (MIT Enterprise Forum) 日前在紐約市舉行了專家座談會,與會專家指出,新的網路搜尋技術,將改變數位內容產業的版圖。一個最重要的技術躍進,在於突破目前以文字為搜尋條件的限制,未來,透過新的技術,使用者將可以圖像、聲音甚至影片來進行搜尋。如此,數位內容產業的傳播將會更具效率,整個產業的發展也會更迅速,消費者也能更快速地享受到各種數位內容。且讓我們拭目以待。
歐盟為清潔能源轉型提出再生能源指令修正提案2016年11月30日,歐盟執委會正式推出了清潔能源轉型(Clean Energy Transition)包裹立法提案。這項又名為「全歐洲人的清潔能源」(Clean Energy for All Europeans)包裹立法提案有三個主要目標,分別為「能源效率優先」(putting energy efficiency first)、「讓歐盟於再生能源取得全球領導地位」,以及「提供消費者公平合理的方案」(providing a fair deal for consumers)。而整個包裹措施的內容,除了再生能源指令(2009/28/EC)的修正案的提出外,並包含能源效率指令(2012/27/EU)以及建築物能源績效指令(2010/31/EU)的修正規劃。 在再生能源指令的修正草案方面,根據執委會的說明文件 ,此次的修正大致延續2015年所提出公眾諮詢的架構,分為六個面向,分別為:(1)於電力部門創造可以促成再生能源進一步佈署之架構(2)供冷供熱部門再生能源的主流化(3)運輸部門的減碳與多元化(4)對於消費者之賦權與資訊之提供(5)強化歐盟對於生質能源的永續性門檻(6)確保歐盟層級的具拘束力目標(binding target)能及時並以符合成本效率之方式達成。 在「於電力部門創造可以促成再生能源進一步佈署之架構」方面,執委會指出,依照目前規劃,2030年時歐洲將有一半的電力來自再生能源。而因應上述規劃願景,此次的修正草案融入會員國在設計支持再生能源機制時所應遵循的一般原則,亦即除了確保相關支持機制對於投資人具透明性與安定性,系爭機制亦須符合成本效益且為市場導向。 在「供冷供熱部門再生能源的主流化」部分,執委會首先說明,供冷供熱佔歐洲能源需求的50%,但此部分再生能源的使用仍然發展遲緩。此次修正規劃的主要重點則首先在於讓會員國有機會以供冷供熱部門為選項來增加其再生能源佔比,以2030年為目標,預計每年增加1%。並在特定條件下,開放再生能源發電業者對於區域型供冷供熱系統的近用權利。 我國政府近來為推動能源轉型政策,亦致力提高再生能源配比,並由行政院核定諸如「太陽光電2年推動計畫」等配套方案,近來並將修正再生能源發展條例;歐盟所提出相關規劃內容,或亦有值得我國參酌之處。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)