根據Ponemon Institute的調查,2011年至2012年中,英國企業資料侵害事故平均成本增加了15%。賽門鐵克指出,若企業備有正式的事故應變計畫,每項資料侵害事故的平均成本會降低至13英磅左右。除此之外,雇用外部顧問來協助應變,資料侵害事故的平均成本也會節省4英磅。
依據新的資料保護法律架構,歐盟委員會日前已開始擬訂新的資料侵害事故通知制度。同時,根據不同委員會的需求,未來將針對特定產業,制定新的網路與資訊安全管理規範。
專家評估未來責任保險將成為確保資訊安全的新潮流。企業藉由事先擬定事故應變計劃來降低資料侵害的風險,同時也進行風險轉移的處置措施。各項事故應變計劃之中,保險制度是企業目前較感興趣的措施之一。保險制度除了可用於風險轉移之外,企業還可以從中取得資料侵害事故的專家網絡。這些專家包含事故鑑定專家、公共關係專家、風險管理專家,信用監測提供者或是資料侵害事故的事務處理公司,例如:協助發送事故通知的公司。保險業建置的專家網絡,未來將可以幫助要保人,以最快最省成本的方式處理相關事故。
因應加拿大-美國-墨西哥協定(Canada-United States-Mexico Agreement, CUSMA)中關於專利期間調整及精簡專利審查程序,加拿大政府對加拿大專利法進行重大修改,新法於2022年10月3日生效,其主要修正重點如下: 1.初步審查報告後之繼續審查要求 如專利申請人欲於3份審查意見報告做成後申請繼續審查(Request for Continues Examination),需支付816加幣之費用(小型企業之費用為408加幣)並可額外獲得最多2份審查意見,如專利仍未核准,申請人需另外再申請繼續審查。 2.超過20項專利請求項之超額費用 專利範圍中多於20項之專利請求項,每多1項專利請求項將被要求額外支付100加幣之超額費用(但小型企業僅需支付40加幣之超額費用),該費用將於以下2個情形產生: (1)當提出審查時,申請案中有超過20項之專利請求項; (2)當支付授予專利的最終費用時,專利請求項在審查過程中超過20項。 3.附條件之專利核准通知 一旦專利申請已接近核准階段,僅剩下次要的手續問題時,加拿大專利局可核發附條件之核准,使申請人修正該問題並支付最終費用以獲取專利。 加拿大政府於2021年7月出版的法規影響聲明(Regulatory Impact Analysis Statement)闡述該法修正理由,並對加拿大專利局無法於合理時間內完成專利審查表示擔憂,於2020年至2021年,加拿大專利審查至授予專利平均時間為31個月,且於本修正案前,對於專利局在授予專利或放棄專利前之審查報告數量未有限制,且無論花費的資源多寡,所有專利之審查費均相同。 該法規影響聲明亦提到加拿大專利申請案包含平均多於其他國家的專利請求項,導致專利審查效率低下,並解釋政府不鼓勵專利申請案包含不必要、過多的專利請求項,確保更快地給予專利,並預計本修正案施行後將減少專利申請量並提高專利品質。 另有論者指出,此修正案可能導致專利申請成本提高,使申請人於加拿大申請專利之意願降低,並認為加拿大專利制度尚待解決的問題在於雙重專利制度(double patenting regime)及專利適格性(subject matter eligibility),本法施行後的實務發展值得持續關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國FDA發布保密證書指引草案,可防止研究人員被迫揭露研究參與者可識別個人之敏感性資料美國FDA(Food and Drug Administration)於2019年11月22日發布「保密證書(Certificates of Confidentiality, CoC)」指引草案。保密證書之目的在於防止研究人員在任何聯邦、州或地方之民事、刑事、行政、立法或其他程序中被迫揭露有關研究參與者可識別個人之敏感性資料,以保護研究參與者之隱私。保密證書主要可分為兩種,對於由聯邦所資助,從事於生物醫學研究、行為研究,臨床研究或其他研究,於研究時會收集可識別個人之敏感性資料之研究人員而言,保密證書會依法核發予該研究人員,稱為法定型保密證書(mandatory CoC);而對於從事非由聯邦所資助之研究的研究人員而言,原則上保密證書不會主動核發予該研究人員,惟當研究涉及FDA管轄之產品時,可由FDA自行裁量而核發保密證書,稱為裁量型保密證書(discretionary CoC),本指引草案旨在提供裁量型保密證書之相關規範。 FDA建議裁量型保密證書之申辦者先自問以下四個問題,且所有問題之答案應該皆為肯定:(1)申辦者所參與之人體研究是否收集可識別個人之敏感性資料?(2)申辦者是否為該臨床研究之負責人?(3)申辦裁量型保密證書之人體研究是否涉及受FDA管轄之產品的使用或研究?(4)申辦者之研究措施是否足以保護可識別個人之敏感性資料之機密性? 於FDA完成審查後,將向申辦人傳送電子回覆信件,表明是否核准裁量型保密證書。若結果為核准,則該電子回覆信件即可作為保密證書。該保密證書之接受者應執行法律所規定以及FDA於電子回覆信件中所要求之保證事項,以保護人體研究參與者之隱私。
美國國會提出SHIELD法案 圍堵專利蟑螂橫行為反制專利蟑螂利用訴訟方式滋擾實際從事研發以及實施專利者,美國國會於2012年8月提出SHIELD法案(Saving High-Tech Innovators from Egregious Legal Disputes Act of 2012 ),顧名思義本法案之目的在於防免高科技創新者陷於惡意挑起的法律爭端之中。該法案補充美國聯邦專利法規定,使得法院得在發現當事人一造並無合理勝訴之可能而仍舊對電腦硬體或軟體專利之有效性提起訴訟,或主張被侵權時,法院得判決其回復全部訴訟之費用支出予除美國以外勝訴之一造(the prevailing party),包括合理之律師費。 SHIELD法案原立意良善,但其也可能就像兩面刃,例如法案的規範內容用語抽象,以致於在企圖達到其立法目的外,未同時設想可能造成的法律陷阱或未預期之法律效果。就法案內容來看,其賦予法院得判決要求回復訴訟費用及律師費之人(所謂勝訴之一造)並不限於原告。又本法案得適用在任何電腦或軟體專利的訴訟,因此,當兩家大型公司相互就專利實施進行對決時,SHIELD法案無異使得原本已經成本很高的競爭更提高雙方的賭注。此外,法案中對「電腦」的定義,不限於一般認知的「軟體或電腦硬體公司」,使得從金融業到汽車製造都可能涵蓋在內,例如銀行就有許多系統可能同時連接具專利之電腦或其他軟體組件。更重要的是,何時勝訴方可獲得律師費之補償判決,法案亦沒有給法院明確之範圍。 雖然本法案最後通過與否或通過施行後的樣貌仍未可知,但可得知的是對於部分NPE之負面利用專利制度之行為,已促使政府與法界思索專利制度如何衡平專利權保護而更能達到專利制度設置之目的,而其未來顯然仍有一段遙遠的路要走。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。